STAT 35510
Lecture 2

Spring, 2024
Jingshu Wang



Outline

* Measurement error in SCRNA-seq experiments
* Doublet removal and ambient RNA correction

* Biological variations and technical noise distributions in scRNA-seq
count matrix



Propagation of measurement error

True Reverse transcription:
RNA molecules |:> RNA -> cDNA /\/\I"V\ * Acellc,agenegyg
X ——
gc Hoc = Binomialge:Prgc)  For UMI counts, roughly
Yyc~Binomial (X, agc)
cDNA amplification - UMI 4
— * or non- reads.
~ Wgc
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Sequencing
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counts - Reads: ¥ ~ Binomial(Wyc, pzg) 1 * Most of scRNA-seq data
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Y nowadays use UM

gc Ygc ~ Binomial(W, 1 — (1 — pp4)H9)



library size

* For UMI counts, roughly
YgC~Binomial(ch, agc)
where a4 is the cell-gene-specific efficiency
* Assume that a,. = a.y, where a. is cell-specific efficiency and y, is a gene-specific bias

* Researchers have observed that a. can vary greatly across cells, but it is typically
unidentifiable (will talk more in later slides)

* Library size of a cell: total total sum of UMI counts across all measured genes in a cell

zg
e Cells with large library size

* Large cells containing many mRNAs (like neurons), high-quality cells where mRNAs are
efficiently captured, doublets
e Cells with small library size
* Small cells containing few mRNAs, low-quality cells, empty droplets

Library size normalization: Y, is not comparable across cells, compare relative proportion
Yyc/lc across cells



Doublets

* |tis always possible that two (or more) cells
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share the same barcode *3

. cells Encapsulate
e Common to have 10% - 20% doublets in P Doublets

scRNA-seq experiments (droplets,

* More cells > higher proportion of doublets  barcoded ~ Wells) ﬁ e
primer beads

* Doublets or multiplets may have relatively large library size, but removing them simply
based on library size is not efficient
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Doublets

 Two major types of doublets

* Homotypic doublets: formed by cells of the same "type”
* Transcriptomic profile looks similar to a singlet
* Hard to identify but also not that harmful for most data analysis purposes

* Heterotypic doublets: formed by cells of distinct transcriptional states
* Possible to identify due to their distinct gene expression profile

* Experimental approaches to identify doublets
* Very few false positives, but requires special experimental design (not available for
most experiments)
 Example techniques:
e species mixture: only works for experiments with multiple species
 demuxlet (Kang et. al. Nature Biotech 2018): use SNP, works for experiments
involving multiple individuals

 Computational approaches: identify doublets solely based on count matrix



SCU b‘et (Wolock et. al. Cell Systems, 2019)

* Core idea:
e Simulate doublet by combing random pairs of cells
* Remove cells if they are similar to the simulated doublets
Do notrely on library size at all

e Simulate pseudo-doublets:
* the counts for gene g in doublet i with parentcellsaandbisY, =Y, +Y,

 KNN classifier to identify cells similar to the pseudo-doublets
* Merge observe cells and pseudo-doublets and preprocess the merged data:
Normalization, identify highly variable genes, scaling, PCA (more details in Lecture 3)
* Find k nearest neighbors of each cell using Euclidean distance (by default)
* q;: (slightly adjusted) proportion of pseudo-doublets in k nearest neighbors of cell i

 ka(d+]
ql - kadj+2

* Remove a cell if g; > ¢y where ¢y is some threshold
* Inthe paper, they defined some Bayesian likelihood L; which is monotone increasing in g;



SCU b‘et (Wolock et. al. Cell Systems, 2019)

* Two key tuning parameters: k and ¢,
* k:they used an adjusted k: k,q; = round(k-(1+r)) where k = round(0.5vnumber of cells) and r>2

(they found this formula empirically)

* (o The distribution of g; is empirically bimodal and they define ¢y as valley between two

modes
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An example

(i) Apply Scrublet

A Kang et al., 2018 B
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DoubletFinder (mcinnis et. al. cell systems, 2019)

 Same idea as Scublet
e 259% pseudo-doublets in the merged data

(1) Simulate Doublets (2) Dimensionality Reduction (3) Doublet Identification
Droplet T
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» Different ways to choose tuning parameters: k and ¢,

* k: choose k to maximize the bimodality coefficient of the distribution of g;
e Bimodality coefficient (formula from SAS)

BC = — 2+

3(_‘n,—1)2
(n—2)(n—3)

Not very ideal, so they used a modified version
* (q: apre-given proportion of doublets need to be detected

DoubletFinder performs slightly better than Scublet in a benchmarking study (Xi and Li, Cell Systems 2021)

y skewness,
K kurtosis



Ambient RNA
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In Droplet-based scRNA-seq platforms, a droplet can @ e A ~¥
contain isolated RNAs even if it does not contain a cell A . A -
~; cDNA synthesis "
Ambient RNA: pool of mMRNA molecules that have been S - Asc.......Contamination
released in the cell suspension @:(‘Bc..zz”d A

Ambient RNA also brings contamination to droplets that
contain cells

Experiment

0.20 B 10X
O DropSeq

Ratio of contaminated RNA on average can be low (
~2%, less than 10%), but the contamination rate can
vary greatly across cells

0.15 —

0.10

Contamination Fraction

o
[=)
a
|
1
4

Why may we separate ambient RNA from mRNAs in the
cell? = empty droplets serve as negative controls T

0.00 —

log10(#UMIs)



Em ptyDrO PS (Lun et. al. Genome Biology, 2019)

Typically, we can identify droplets with no cells by the library size (library size too small)

This paper argued that such method discards small cells with low RNA content
Goal: rescue true cells with small library size

This paper only detect empty droplets, it does not correct for ambient RNA in droplets with cells

Core idea: find empty droplets use both the library size and gene expression profile

* Learn an initial ambient profile
* Estimate empty droplet gene expression distribution

 Compute a p-value for each barcode to test whether the barcode is not an empty droplet

 Keep barcodes as “cells” if they have small p-values or large enough library size



Em ptyDrO PS (Lun et. al. Genome Biology, 2019)

* Estimate empty droplet gene expression distribution
* Select barcodes whose library sizes are less than T as an initial pool of empty droplets
* Assume that gene expressions in an empty droplet i follows
(Y;, -+, Yg;) ~Dirichlet_multinomial(l;, (a¢py, =+, @oPg))
[check Wikipedia for the definition]
* Py is obtained by some empirical Bayes estimate to avoid reaching 0

* @ estimated by maximum likelihood estimation given an estimated p,

 Compute p-value to test whether a barcode is not an empty droplet
* Essentially test whether an observation comes from a known distribution
» Basically, you check if the observation b is at the tail of the density (likelihood in the paper)
 Monte Carlo calculation of tail probability
 Sample N new observations from the above estimated empty droplet distribution, get the
density Lqp, - Lyp
* Calculate p-value as proportion of L1y, -** Lyp that are smaller than Lj (density of b)

e Barcode selection Conventional method
* BH correction of p-values and select a barcode if library size [; > U where U is a knee point
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SOU pX (Young et. al. GigaScience, 2020)

Correct for ambient RNA confounding in cells

Core idea:
* Estimate ambient RNA gene expression profile from empty droplet (similar to EmptyDrops)

1. Determine the expression profile of contamination
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e Use marker genes to determine proportion of contamination in each cell
 Remove the estimated ambient RNA count for each gene from the observed counts



SOU pX (Young et. al. GigaScience, 2020)

e Use marker genes to determine proportion of contamination in each cell
Yoc = mye + 04
* 0gc = lepcby: pe contamination rate in each cell
* “Negative control” genes
Assume that the marker genes for one cell cluster has zero expression in other cells
* If gene g is a negative control for the cell, then mg,. = 0 and Y,./(I;by) = p,

* Estimate p. as the mode of the gene-specific estimated rates

2. Estimate or set the global contamination rate

2.1 Marker genes for each cluster identified 2.2 Set contamination to most common estimate

LRRC26
CLEC4C
SCT

Accurate estimates cluster
around true contamination rate

Keep only highly f
HES4 = s specific genes [ { Inaccurate estimates have
CDKN1C NS no preferred value
FCGR3A Qg Estimate contamination

independentely for each
gene (Figure S1)

FGFBP2

r T T T 1
S 0.0 0.2 0.4 0.6 0.8 1.0
BANK1

IGHG1 Global contamination fraction estimate
MS4A1

* Some adjustments to provide a good estimate of 04, (need to be an integer, no greater than Y )



ScCRNA-seq count matrix is very noisy

Observed count data Y L True gene expression X
Cells —, Cells —,
Technical zeros
o 0O 3 0 - 0 o 0 12 0 - 30
> 4 0 1 - 0 § 15 7 1 -0
| 0 0 0 0 o 0 0 - 5
€ ———— > - ———— >
biological variation + measurement error biological variation

* Observed count matrix Y is typically extremely sparse
* About 99% of the entries are zeros
* Two types of zeros
* Biological zeros: true mRNA count is zero
 Technical zeros: true mRNA count is not zero, but observed count is zero

* Dropouts are not missing at random!

17



Measurement error distribution

* Both reverse transcription and sequencing can

True Reverse transcription: ] )
RNA molecules . gl RNA -> cDNA A generate technical zeros, which can be
Xgc — theoretically explained by Binomial distributions

Wy ~ Binomial(Xy¢, p1gc) ] .
Y c~Binomial(X,., acyg)

cDNA amplification | ______ * Due to low efficiency (a, < 10%), roughly

Woe =D, _ ZisZi~litg, 3] A Y c~Poisson(a .y X,c)

* Sequencing depth: total number of reads per cell

e Sequencing * Refer to p,,: deeper sequencing depth, more
easure . . ~ T .
counts qa | "o B eny) L reads sampled from the library

Yoc Y, * Binomial(Wye, 1 — (1 — pyg)He) — * Roughly controllable by experimenters,

depends on the budget



Noise distribution: zero inflation or not?

* Gaussian assumptions on the observed data (even after transformations) usually do not work well
* scRNA-seq data is extremely sparse

* Because of the extreme sparsity of scRNA-seq data, many earlier papers have used a zero-inflated
model: such as zero-inflated Poisson or zero-inflated negative binomial model for scRNA-seq data

* A zero-inflated model have more parameters to fit, is it worth it?

Observed count data Y

Cells —
Technical zeros
Q 0 3 0 0
> 4 0 1 0
7 12 10 4 1
l 0 0 O 0
€ ————— >

biological variation + measurement error



ERCC spike-ins

* For UMI counts, YgC~Poisson(acnggc)
A Poisson distribution + cell-specific efficiency seems sufficient

 The above model is only a simplification, can we find empirical evidence?
* Typically challenging to separate biological variations from measurement errors

* Distribution of true gene expression X, can be complicated (will discuss later)
* . istypically also unidentifiable

* ERCC spike-in ‘gene’ g (negative controls):

Spike-in

genes

NN
NN
N

\

Mixtures with known
abundance ratios

iid Known
X4c ~ Poisson(u,)

Conventionally, researchers treat X
as constant across cells

Var(Y,.) = 2acyylig

Assume Y, = 1, then a, is identifiable



Gini

cv

Nonzero Fraction

Noise distribution for UMI data is not zero-inflated

 Some empirical evidence using ERCC spike-ins
 (Wang et. al. PNAS 2018):

Assuming the Poisson noise model YgC~Poisson(aCXgC), used a distribution deconvolution
method to estimate the distribution of X across cells for each ERCC spike-in gene
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Noise distribution for UMI data is not zero-inflated

* Some empirical evidence using ERCC spike-ins
* (Svensson, Nature Biotech, 2020):

Use Negative-Binomial distribution to model the ERCC spike-ins and YgC~NB(ug, Hg)
check if the observed zero proportion match with the estimated values

\
a Klein et al., 2015 b Svensson et al., 2017 (1) c Svensson et al., 2017 (2)
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Factors affecting the noise distribution

e Batch effect:

non-biological factors in an experiment cause changes in the data produced by the
experiment

Common causes: laboratory conditions, Choice of reagent lot or batch, Personnel differences,
Time of day when the experiment was conducted, instruments used to conduct the
experiment

Long-standing issue for sequencing data

New challenge for single-cell sequencing data (more in later lectures)

Batch effects introduce both biases and over-dispersion to the noise distribution

With batch effects, the actual noise distribution may be more dispersed than a Poisson model

e Researchers have shown that zero-inflation noise model can still benefit non-UMI
data



True biological variations

* Distribution of X, across cells can be really complicated

* Diversity of cell types

* many genes are unexpressed in a cell
» cells of distinct types have different genes expressed

* Transcriptional bursting

' kon
<=
off !
i S
\ 4

6 <o

Burst frequency: k
Burst size: s/k_,

Jiang, Yuchao, Nancy R. Zhang, and Mingyao
Li. "SCALE: modeling allele-specific gene
expression by single-cell RNA

sequencing." Genome biology 18 (2017): 1-15.

S Lot 0 iTimer o I

For a given time interval, number of mRNAs for a gene in a cell follows
Poisson-beta distribution (Kepler and Elston, Biophysical J, 2001)

Y ~Poisson(sp), p~Beta(kon, kosr)
Xg4¢ across cells in a homogenous cell population should also follow a
similar distribution



Modeling true gene expression distribution

* True distribution of X, can be really complicated

* Itis also not identifiable from most scRNA-seq data (as we only know library size [ instead of
efficiency a,)
Xgc
Zg Xgc
* Without considering batch effects, we may assume YgC~Poisson(legc)

* Itis only possible to model the gene expression proportion p,. =

Expression model Observation model Method
Point mass (no variation) Poisson Analytic
Gamma Negative Binomial MASSﬂ, edgeRﬂ, DESquﬁ, BASICSﬂ,
20
SAVER Table 1 of Sarkar and
Point-Gamma Zero-inflated Negative PSCL* Stephens, Nature
Binomial Genetics, 2021
Unimodal (non- Unimodal ashrz40
parametric)
Point-exponential family  Flexible DESCEND?
Fully non-parametricﬂ Flexible ashr

° Dependence structure across genes



DSCEND (wang et. al. PNAS 2018)

e Distribution deconvolution

o v Distribution Deconvolution
l'fl\'wd H Technical noise ~9¢€ . Hg
9 ind ]
YoclXge ~ Pmsson(lCch)

Q-

H

X g

gc

* Semi-parametric distributional assumption (G-modeling, Efron Biometrika 2016)

hy(x) = 160 + (1 —1my)exp[Q(x)Ta — g(a)]
* Q(x) is non-parametric, and is estimated by cubic splines after discretizing the data
* Forx # 0,Assumethatz € x = (1, - ,Tm)

P[X = ] = exp{Q" o — ¢(a)}

where Q is the 5-degree natural cubic spline matrix at x
* Incorporate covariates in the distribution:
* Incorporate covariates in both 7, and the non-zero part

» Non-zero part: assume X, = eVFX . where X,. ~ H,

 Statistical inference: Taylor expansion on the estimating equation



Validation using FISH experiment
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https://mcb.berkeley.edu/faculty/GEN/rinej.html

Modeling distribution of observed counts

 Why do we want to separate the true gene expression variation from the noise distribution?
* Researchers are interested in the proportion of true zeros
* |dentify changes in gene expression variations instead of in mean

* Sometimes we may just want to model the observed counts
* Example: test for gene expression mean changes between two cell types

 Complexity in true gene expression can bring in both over-dispersion and zero-inflation in the observed
count if we just use a Poisson model with cell-specific library size

A common approach is to use a Negative-Binomial distribution or zero-inflated NB distribution

* (Kim et. al. Genome Biology 2020) showed that Poisson distribution is good enough to model Yy
for a relatively homogenous cell population

» (Saket and Satija, Genome Biology 2022) showed that Poisson distribution is not enough to model
Y, for a relatively homogenous cell population if sequencing is not shallow and should use a
Negative Binomial distribution

« A common approach is to use an autoencoder (latent factor model) to capture gene-gene dependence
and cell population heterogeneity use NB likelihood to construct loss function
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