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Outline

• Measurement error in scRNA-seq experiments

• Doublet removal and ambient RNA correction

• Biological variations and technical noise distributions in scRNA-seq 
count matrix



Propagation of measurement error

• A cell 𝑐, a gene 𝑔

• For UMI counts, roughly
𝑌!"~Binomial(𝑋!", 𝛼!")

• For non-UMI reads:
• 𝑌!" = 0 if 𝑊!" = 0
• 𝑌!" can be large if 𝑊!" 

due to amplification

• Most of scRNA-seq data 
nowadays use UMI



library size
• For UMI counts, roughly

𝑌!"~Binomial 𝑋!", 𝛼!"
where 𝛼!" is the cell-gene-specific efficiency

• Assume that 𝛼!" ≈ 𝛼"𝛾! where 𝛼" is cell-specific efficiency and 𝛾! is a gene-specific bias

• Researchers have observed that 𝛼" can vary greatly across cells, but it is typically 
unidentifiable (will talk more in later slides)

• Library size of a cell: total total sum of UMI counts across all measured genes in a cell

𝑙" =7
!
𝑌!"

• Cells with large library size
• Large cells containing many mRNAs (like neurons), high-quality cells where mRNAs are 

efficiently captured, doublets
• Cells with small library size

• Small cells containing few mRNAs, low-quality cells, empty droplets

• Library size normalization: 𝑌!" is not comparable across cells, compare relative proportion 
𝑌!"/𝑙" across cells



Doublets
• It is always possible that two (or more) cells 

share the same barcode
• Common to have 10% - 20% doublets in 

scRNA-seq experiments
• More cells à higher proportion of doublets

• Doublets or multiplets may have relatively large library size, but removing them simply 
based on library size is not efficient

Germain, Pierre-Luc, et al. 
"Doublet identification in single-
cell sequencing data using 
scDblFinder." F1000Research 1
0 (2021).



Doublets
• Two major types of doublets

• Homotypic doublets: formed by cells of the same ”type”
• Transcriptomic profile looks similar to a singlet
• Hard to identify but also not that harmful for most data analysis purposes

• Heterotypic doublets: formed by cells of distinct transcriptional states
• Possible to identify due to their distinct gene expression profile

• Experimental approaches to identify doublets
• Very few false positives, but requires special experimental design (not available for 

most experiments)
• Example techniques: 

• species mixture: only works for experiments with multiple species
• demuxlet (Kang et. al. Nature Biotech 2018): use SNP, works for experiments 

involving multiple individuals

• Computational approaches: identify doublets solely based on count matrix



Scublet (Wolock et. al. Cell Systems, 2019)

• Core idea:
• Simulate doublet by combing random pairs of cells
• Remove cells if they are similar to the simulated doublets
• Do not rely on library size at all

• Simulate pseudo-doublets:
• the counts for gene 𝑔 in doublet 𝑖 with parent cells 𝑎 and 𝑏 is 𝑌𝑔𝑖	 = 𝑌𝑔𝑎	 + 𝑌𝑔𝑏

• KNN classifier to identify cells similar to the pseudo-doublets
• Merge observe cells and pseudo-doublets and preprocess the merged data:

Normalization, identify highly variable genes, scaling, PCA (more details in Lecture 3)
• Find 𝑘 nearest neighbors of each cell using Euclidean distance (by default)
• 𝑞#: (slightly adjusted) proportion of pseudo-doublets in k nearest neighbors of cell 𝑖

• Remove a cell if 𝑞# > 𝑐$ where 𝑐$ is some threshold
• In the paper, they defined some Bayesian likelihood 𝐿# which is monotone increasing in 𝑞#



Scublet (Wolock et. al. Cell Systems, 2019)

• Two key tuning parameters: 𝑘 and 𝑐$
•  𝑘: they used an adjusted 𝑘: kadj = round(k⋅(1+r)) where 𝑘 = round(0.5 number	of	cells) and r≥2

(they found this formula empirically)

• 𝑐$ The distribution of 𝑞# is empirically bimodal and they define 𝑐$ as valley between two 
modes



An example

Experiment 
approach to identify 
true doublets



DoubletFinder (McGinnis et. al. Cell Systems, 2019)

• Same idea as Scublet
• 25% pseudo-doublets in the merged data

• Different ways to choose tuning parameters: 𝑘 and 𝑐$
• 𝑘: choose 𝑘 to maximize the bimodality coefficient of the distribution of 𝑞# 

• Bimodality coefficient (formula from SAS)

• Not very ideal, so they used a modified version
• 𝑐$: a pre-given proportion of doublets need to be detected

• DoubletFinder performs slightly better than Scublet in a benchmarking study (Xi and Li, Cell Systems 2021)

𝛾 skewness, 
𝜅 kurtosis



Ambient RNA
• In Droplet-based scRNA-seq platforms, a droplet can 

contain isolated RNAs even if it does not contain a cell

• Ambient RNA: pool of mRNA molecules that have been 
released in the cell suspension

• Ambient RNA also brings contamination to droplets that 
contain cells

• Ratio of contaminated RNA on average can be low ( 
~2%, less than 10%), but the contamination rate can 
vary greatly across cells 

• Why may we separate ambient RNA from mRNAs in the 
cell?  à empty droplets serve as negative controls



EmptyDrops (Lun et. al. Genome Biology, 2019)

• Typically, we can identify droplets with no cells by the library size (library size too small)

• This paper argued that such method discards small cells with low RNA content
• Goal: rescue true cells with small library size

• This paper only detect empty droplets, it does not correct for ambient RNA in droplets with cells

• Core idea: find empty droplets use both the library size and gene expression profile
 

• Learn an initial ambient profile
• Estimate empty droplet gene expression distribution

• Compute a p-value for each barcode to test whether the barcode is not an empty droplet

• Keep barcodes as “cells” if they have small p-values or large enough library size



EmptyDrops (Lun et. al. Genome Biology, 2019)

• Estimate empty droplet gene expression distribution
• Select barcodes whose library sizes are less than 𝑇 as an initial pool of empty droplets
• Assume that gene expressions in an empty droplet 𝑖 follows

𝑌%#, ⋯ , 𝑌&# ~Dirichlet_multinomial 𝑙#, (𝛼$ Q𝑝%, ⋯ , 𝛼$ Q𝑝&)
      [check Wikipedia for the definition]
• Q𝑝! is obtained by some empirical Bayes estimate to avoid reaching 0
• 𝛼$ estimated by maximum likelihood estimation given an estimated Q𝑝!

• Compute p-value to test whether a barcode is not an empty droplet
• Essentially test whether an observation comes from a known distribution
• Basically, you check if the observation 𝑏 is at the tail of the density (likelihood in the paper)
• Monte Carlo calculation of tail probability

• Sample 𝑁 new observations from the above estimated empty droplet distribution, get the 
density 𝐿%', ⋯ 𝐿('

• Calculate p-value as proportion of 𝐿%', ⋯ 𝐿(' that are smaller than 𝐿' (density of 𝑏)

• Barcode selection
• BH correction of p-values and select a barcode if library size 𝑙# > 𝑈 where U is a knee point

Conventional method



Some results



SoupX (Young et. al. GigaScience, 2020)

• Correct for ambient RNA confounding in cells

• Core idea: 
• Estimate ambient RNA gene expression profile from empty droplet (similar to EmptyDrops)

• Use marker genes to determine proportion of contamination in each cell
• Remove the estimated ambient RNA count for each gene from the observed counts



SoupX (Young et. al. GigaScience, 2020)

• Use marker genes to determine proportion of contamination in each cell
𝑌!" = 𝑚!" + 𝑜!"

• 𝑜!" = 𝑙"𝜌"𝑏!: 𝜌" contamination rate in each cell
• “Negative control” genes

Assume that the marker genes for one cell cluster has zero expression in other cells
• If gene g is a negative control for the cell, then 𝑚!" = 0 and  𝑌!"/(𝑙"𝑏!) ≈ 𝜌"
• Estimate 𝜌" as the mode of the gene-specific estimated rates

• Some adjustments to provide a good estimate of 𝑜!" (need to be an integer, no greater than 𝑌!")
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True gene expression 𝑋!"Observed count data 𝑌!" 

biological variationbiological variation + measurement error

0 12 0 ⋯ 30
15 7 1 ⋯ 0
120 147 62 ⋯ 27
0 0 0 ⋯ 5

Genes 

Cells 

0 3 0 ⋯ 0
4 0 1 ⋯ 0
12 10 4 ⋯ 1
0 0 0 ⋯ 0

Genes 

Cells 

• Observed count matrix 𝑌 is typically extremely sparse
• About 99% of the entries are zeros
• Two types of zeros

• Biological zeros: true mRNA count is zero
• Technical zeros: true mRNA count is not zero, but observed count is zero 

• Dropouts are not missing at random!

Technical zeros

Biological zeros

scRNA-seq count matrix is very noisy



Measurement error distribution

• Both reverse transcription and sequencing can 
generate technical zeros, which can be 
theoretically explained by Binomial distributions

𝑌%&~Binomial(𝑋%& , 𝛼&𝛾%)

• Due to low efficiency (𝛼& < 10%), roughly
𝑌%&~Poisson(𝛼&𝛾%𝑋%&)

• Sequencing depth: total number of reads per cell
• Refer to 𝑝'%: deeper sequencing depth, more 

reads sampled from the library
• Roughly controllable by experimenters, 

depends on the budget



Noise distribution: zero inflation or not?
• Gaussian assumptions on the observed data (even after transformations) usually do not work well

• scRNA-seq data is extremely sparse

• Because of the extreme sparsity of scRNA-seq data, many earlier papers have used a zero-inflated 
model: such as zero-inflated Poisson or zero-inflated negative binomial model for scRNA-seq data

• A zero-inflated model have more parameters to fit, is it worth it?

Observed count data 𝑌!" 

biological variation + measurement error

0 3 0 ⋯ 0
4 0 1 ⋯ 0
12 10 4 ⋯ 1
0 0 0 ⋯ 0

Genes 

Cells 
Technical zeros

Biological zeros



ERCC spike-ins
• For UMI counts, 𝑌!"~Poisson 𝛼"𝛾!𝑋!"

A Poisson distribution + cell-specific efficiency seems sufficient

• The above model is only a simplification, can we find empirical evidence?
• Typically challenging to separate biological variations from measurement errors
• Distribution of true gene expression 𝑋!" can be complicated (will discuss later)
•  𝛼" is typically also unidentifiable

• ERCC spike-in ‘gene’ 𝑔 (negative controls):

Known
Spike-in 
genes • 𝑋%& 	 ~

(.(.*	Poisson(𝜇%)

• Conventionally, researchers treat 𝑋%& 
as constant across cells

Var 𝑌%& = 2𝛼&𝛾%𝜇%

• Assume 𝛾% = 1, then 𝛼& is identifiable



Noise distribution for UMI data is not zero-inflated

• Some empirical evidence using ERCC spike-ins
• (Wang et. al. PNAS 2018): 

Assuming the Poisson noise model 𝑌!"~Poisson 𝛼"𝑋!" , used a distribution deconvolution 
method to estimate the distribution of 𝑋!" across cells for each ERCC spike-in gene

G
in
i

True Molecules [log+,(𝜇%)]

CV, Gini coefficients:
measurements of 
dispersion



Noise distribution for UMI data is not zero-inflated

• Some empirical evidence using ERCC spike-ins
• (Svensson, Nature Biotech, 2020): 

Use Negative-Binomial distribution to model the ERCC spike-ins and  𝑌!"~NB 𝜇!, 𝜃!
check if the observed zero proportion match with the estimated values



Factors affecting the noise distribution
• Batch effect: 

• non-biological factors in an experiment cause changes in the data produced by the 
experiment 

• Common causes: laboratory conditions, Choice of reagent lot or batch, Personnel differences, 
Time of day when the experiment was conducted, instruments used to conduct the 
experiment

• Long-standing issue for sequencing data
• New challenge for single-cell sequencing data (more in later lectures)

• Batch effects introduce both biases and over-dispersion to the noise distribution

• With batch effects, the actual noise distribution may be more dispersed than a Poisson model

• Researchers have shown that zero-inflation noise model can still benefit non-UMI 
data



True biological variations

• Distribution of 𝑋!" across cells can be really complicated
• Diversity of cell types

• many genes are unexpressed in a cell
• cells of distinct types have different genes expressed

• Transcriptional bursting 

• For a given time interval, number of mRNAs for a gene in a cell follows 
Poisson-beta distribution (Kepler and Elston, Biophysical J, 2001)

𝑌~Poisson 𝑠𝑝 , 𝑝~Beta(𝑘-., 𝑘-//)
• 𝑋%& across cells in a homogenous cell population should also follow a 

similar distributionJiang, Yuchao, Nancy R. Zhang, and Mingyao 
Li. "SCALE: modeling allele-specific gene 
expression by single-cell RNA 
sequencing." Genome biology 18 (2017): 1-15.



Modeling true gene expression distribution
• True distribution of 𝑋!" can be really complicated 

• It is also not identifiable from most scRNA-seq data (as we only know library size 𝑙" instead of 
efficiency 𝛼")

• It is only possible to model the gene expression proportion 𝑝!" =
)!"

∑! )!"
• Without considering batch effects, we may assume 𝑌!"~Poisson 𝑙"𝑝!"

• Dependence structure across genes

Table 1 of Sarkar and 
Stephens, Nature 
Genetics, 2021



DSCEND (Wang et. al. PNAS 2018)

𝑌QR
Distribution Deconvolution

𝑌!"|𝑋!"	 ~
+,-	 Poisson 𝑙"𝑋!"

"𝐻Q
?

𝑋QR ~
S.S.T	𝐻Q Technical noise ≈ 𝐻Q

• Distribution deconvolution

• Semi-parametric distributional assumption (G-modeling, Efron Biometrika 2016)
ℎ!(𝑥) = 	𝜋!𝛿$ + 1 − 𝜋! exp[𝑄 𝑥 .𝛼 − 𝑔 𝛼 ]

• 𝑄(𝑥) is non-parametric, and is estimated by cubic splines after discretizing the data
• For 𝑥 ≠ 0, Assume that

where 𝑄 is the 5-degree natural cubic spline matrix at 𝒙 
• Incorporate covariates in the distribution:

• Incorporate covariates in both 𝜋! and the non-zero part
• Non-zero part: assume 𝑋!" = 𝑒/"0 k𝑋!" where k𝑋!"	~	𝐻!

• Statistical inference: Taylor expansion on the estimating equation



Validation using FISH experiment

Fluorescence 
in-situ 

hybridization
 (RNA FISH)

~80,000 cells
26 genes

 

Melanoma 
Cell Line

11 genes overlap between FISH 
and Drop-seq

Single cell RNA 
sequencing
(Drop-seq)

~8,000 cells
~12,000 genes

Photo courtesy of Anne Dodson and Professor Jasper Rine

Much more 
Accurate

U𝑯𝒈 V.S. 𝑯𝒈 

𝑯𝒈
$𝑯𝒈

observed

https://mcb.berkeley.edu/faculty/GEN/rinej.html


Modeling distribution of observed counts
• Why do we want to separate the true gene expression variation from the noise distribution?

• Researchers are interested in the proportion of true zeros
• Identify changes in gene expression variations instead of in mean

• Sometimes we may just want to model the observed counts
• Example: test for gene expression mean changes between two cell types

• Complexity in true gene expression can bring in both over-dispersion and zero-inflation in the observed 
count if we just use a Poisson model with cell-specific library size
• A common approach is to use a Negative-Binomial distribution or zero-inflated NB distribution
• (Kim et. al. Genome Biology 2020) showed that Poisson distribution is good enough to model 𝑌!" 

for a relatively homogenous cell population 
• (Saket and Satija, Genome Biology 2022) showed that Poisson distribution is not enough to model 
𝑌!" for a relatively homogenous cell population if sequencing is not shallow and should use a 
Negative Binomial distribution

•  A common approach is to use an autoencoder (latent factor model) to capture gene-gene dependence 
and cell population heterogeneity use NB likelihood to construct loss function
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