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Outline

e Standard scRNA-seq data analysis workflow: Seurat and Scanpy

* Dimensional reduction, highly variable gene selection, visualization



Standard pipeline for scRNA-seq
preprocessing and visualization

 Remove low-quality cells
* Mitochondria also have DNA and can transcribe
into RNA
* Mitochondrial mRNA also have poly-A tail that are
captured in scRNA-seq
* High expression levels of mitochondrial genes can
be an indicator of lysing cells

* Remove cells that have a high proportion of
reads from mitochondrial genes (default 5%)
* Maybe better to use 10% for human cells
(Osorio and Cai, Bioinformatic 2021)
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Seurat (Satija group)

* An R package that is widely used
e Current version v5 supports multi-modality and scalable analysis

Schneider, I, Cepela, J., Shetty, M., Wang, J., Nelson, A. C., Winterhoff, B., & Starr, T. K. (2021). Use of “default” parameter settings when analyzing
single cell RNA sequencing data using Seurat: a biologist’s perspective. J Transl Genet Genom, 5, 37-49.



Seurat object

Reference tutorial:
https://sib-
swiss.github.io/single-cell-

SeuratObject::Seurat

sparse matrix

list of objects

@ assays » SeuratObject::Assay5 > @ layers » $ data

@ meta.data » data.frame @ cells $ counts

@ active.assay —> character @ features $ scale.data
@ active.ident » vector

@ graphs

v

SeuratObject: :Graph

@ neighbors

@ reductions

SeuratObject: :DimReduc

training/dayl/dayl-
2 analysis tools gc.html

@ images

@ project.name » character

@ misc

@ version » package version

@ commands

v

SeuratObject: :SeuratCommand

@ tools

 New data storage
infrastructure and
sketch-based
analysis in Seurat v5
that allows analysis
and storage of
millions and cells


https://sib-swiss.github.io/single-cell-training/day1/day1-2_analysis_tools_qc.html
https://sib-swiss.github.io/single-cell-training/day1/day1-2_analysis_tools_qc.html
https://sib-swiss.github.io/single-cell-training/day1/day1-2_analysis_tools_qc.html

Scanpy (Wolf et. al. Genome Biology 2018)

* A python package alternative to Seurat
 Handle large-scale data

AnnData object
* Easy to interface with deep-learning based methods
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scRNA-seq dimension reduction and visualization
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Linear dimension reduction: PCA

original data space

PCA component space
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 Not ideal for visualization

* Requires proper normalization of the data for using Euclidean distance
* High-dimensional PCA is not accurate



scRNA-seq normalization

Why do we need normalization?
e Raw counts across cells are not comparable = adjust for library size
 Make the data more “Gaussian” before using linear methods like PCA

Shifted logarithm

* Library size normalization + taking logarithm

f(ygc) 108(— + ¥o)

C
*  Yo: pseudo-count to avoid log(0). Typically yo = 1 to make the normalized data sparse

e s, =1l./L sothat y, is not too influential. L = 10* (Seurat and Scanpy default)

» Shifted logarithm is approximately doing some variance stabilization

Var(f( )) Var( )

if Yoc~NB(ug,0) then Var(YgC) = Uy + B,ug, variance stabilized if © or u, is large

* Scaling: standardize each gene across cells to have mean 0 and variance 1 after log-normalization



Pearson / deviance residuals

Sctransform (Hafemeister and Satija, Genome Biology 2019; Choudhary and Satija, Genome Biology 2022)

g ~ NB(pgc, 6y)
Inpg = By +1nn,

|Og10 0

. . . . Uncertainty
* ncisthe library size, x . is the observed count (Y) 0.0

* Assume lge = NPy
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* Estimate 6, as a smoothed function of u,. 8, = oo for small u,

* If we are interested in heterogeneity across cells, then p 4. contains non-interesting information
 Normalized data is not sparse any more



Pearson / deviance residuals

Deviance residuals (Townes et. al. Genome Biology 2019)

For general definitions, check a GLM book
The deviance residuals can look more normal than Pearson residuals

Assume Poisson model on the observed counts

X A
ch — Sign (Xcg o :&’cg) \/2 [XCQ In A - - (XCQ B 'U'CQ)]

:ucg

Assume NB model on the observed counts

Xcg+9]

/lcg+9

. A XCC]
Z.q = sign (Xcg — ,ucg) 2 | XegIn— — (Xy+6)In
ILLCg

(formula and notations copied from Lause et. al. Genome Biology 2021)
Assume multinomial distribution (Townes et. al. Genome Biology 2019)

d : . Yij i j
Tq(;j) = sign(y;; — ,ufi_j)\/zyij log A'J' + 2(n; — yij) log ——
ij

e Almost identical to the Poisson deviance



Selection of highly variable genes (HVG)

 High-dimensional PCA is not accurate when latent factors are not strong enough
* If ageneis expressed homogeneously across cells, it does not contain information about cell
heterogeneity and only contribute noise to PCA

e Selection of HVG:
only use genes that have higher variability across cells than background when doing PCA
* |dentify a subset of 500-2000 genes
e Using Sctransform Pearson residuals
* Calculate variance of Z, for each g across c, select the top ones
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* Default method in Seurat: same idea, but a more straight-forward way to get Z;.

Standardized Variance

Z _ ch - Yg 34
gc = 4
g |
gy is calculated by fitting a smoothed mean-variance relationship e

Average Expression

* Calculate residual deviance:
if Z,. are deviance residuals, rank genes based on ZCch



Non-linear visualization: t-SNE & UMAP

* PCA for dimension reduction:
* Only use HVG to perform PCA and get PC loadings
e Selectiontop k (k = 50 in Seurat default) PCs to reduce data dimensions for further cell-level analyses
» Systematic selection of k is possible but can be time consuming and may not worth it

* t-SNE: t-Distributed Stochastic Neighbor Embedding

Paper: https://lvdmaaten.github.io/publications/papers/JIMLR _2008.pdf
Presentation: https://www.youtube.com/watch?v=RJVL80Gg3IA&list=UUtXKDgv1AVoG88PLISnGXmw

* UMAP: Uniform Manifold Approximation and Projection

Paper: https://arxiv.org/pdf/1802.03426.pdf
Benchmark paper on scRNA-seq: https://www.nature.com/articles/nbt.4314
Presentation: https://www.youtube.com/watch?v=nqg6iPZVUxZU



https://lvdmaaten.github.io/publications/papers/JMLR_2008.pdf
https://www.youtube.com/watch?v=RJVL80Gg3lA&list=UUtXKDgv1AVoG88PLl8nGXmw
https://arxiv.org/pdf/1802.03426.pdf
https://www.nature.com/articles/nbt.4314
https://www.youtube.com/watch?v=nq6iPZVUxZU

The idea of t-SNE

SNE (stochastic neighbor embedding)

* Preserve the similarity of high-dimensional points in low-dimensional points
* Measure similarity (conditional distributions) by Gaussian density

exp (—|pi —x/]1*/267)

Jli Zk;éi exp (— ||x,- —xk||2/2<5,2) Find {y;} to minimize:

Original space:

Low-dimensional space: exp (_”)’i _J’j||2) C =Y KL(P||Q) =22pj|i10g%
i i Jli

q P —
=S ziexp (—[lyi — yl?)

* Because of asymmetry in the KL divergence
* large cost for using widely separated (y;, y;) to represent nearby (x;, x;)
* Small cost for using nearby (y;, y;) to represent widely seperated (x;, x;)
* Only retain local structure of the data



The idea of t-SNE

SNE (stochastic neighbor embedding)

* Determination of the standard deviations o;
* Smaller o; for denser regions and larger g; for sparser regions
* For each |, find g; that reaches a pre-specified perplexity

Perp(P,) =21®),
where H(P;) is the Shannon entropy of P; measured in bits

H(P,) = —ijﬁlogzpﬂi-

* Decrease perplexity to preserve more global structures

* Solution obtained by gradient descent
 |Initialization: randomly sampled points from independent Gaussian
e Large momentum to avoid poor local minima
 Difficult to optimize and has “crowding problem”



The idea of t-SNE

t-SNE (t-distribution density [Cauchy])

o exp (—|lx; —x;||*/207) = PjlitPi
I Saziexp (— [ — xi|2/207) 2n

Low-dimensional space: \exp\(\”yl yj”2 Find {y;} to minimize:
T Sipsexp (Srr=ul) 0= KL(PIQ) = 33yt

(L + |y — y|1?)~
1
>kt (L llye —uill®)

Original space:

dij =

* Represent high-dimensional points better and keep moderately far-away points not too close
e Faster to optimize because calculation does not involve exponential

« Computational cost: 0(n?)



Visualization of MNEST data
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(a) Visualization by Isomap.

(a) Visualization by t-SNE.

(b) Visualization by Sammon mapping.

(b) Visualization by LLE.



The (very high-level) idea of UMAP

e Construct topological representation of high-
dimensional data

e Assume that the data points uniformly lie on a low-
dimensional manifold

* Define local distance by k-nearest neighbors and construct
a weighted k-neighbour graph

* Based on the theory of local fuzzy simplicial set
representations

* Represent the manifold by low-dimensional points

* Minimize cross entropy of fuzzy simplicial set
representation between the low and high-dimensional
space

» Use force-directed graph layout algorithm in low-
dimensional space

e Computational cost: 0(n'1%)

R — R™

https://www.youtube.com/watch?v=ng6iPZVUxZU



https://www.youtube.com/watch?v=nq6iPZVUxZU

UMAP

t-SNE

PCA

Compare PCA, t-SNE, UMAP
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* PCA: keep global distance

 T-SNE: focus on local distance

 UMAP: focus on local distance,
but may keep more global
distance features

https://arxiv.org/pdf/1802.03426.pdf



https://arxiv.org/pdf/1802.03426.pdf

Visualize scRNA-seq using PCA, t-SNE, UMAP
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Data from paper: Lineage dynamics of murine pancreatic development at single-cell resolution, Byrnes et. al. Nature Comm. 2018

Analysis pipeline see Seurat tutorial: https://satijalab.org/seurat/v3.0/pbmc3k tutorial.html



https://satijalab.org/seurat/v3.0/pbmc3k_tutorial.html

UMAP is better at showing the cell lineages

tSNE_2

tSNE_ 1 UMAP _1 UMAP 1

https://ouyanglab.com/singlecell/dimrd.html#trajectory-inference-and-pseudotime



Running time comparison

e PCA
UMAP
e MulticoreTSNE
2000

* Computation of UMAP is
based on the construction of
k-nearest-neighbor graph

* Nearest neighbors are
obtained using the top PCs

« Computational cost: 0(n'1%)
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https://umap-learn.readthedocs.io/en/latest/benchmarking.html



https://umap-learn.readthedocs.io/en/latest/benchmarking.html
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