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* Cell type annotation



Louvain cluste ring (Blondel et. al., Journal of Statistical mechanics, 2008)

 Community detection method based on the k-nearest neighbor graph
 Clustering results should be mostly consistent with UMAP / tSNE

* Maximize modularity

1 N N kikj
Q=5 -, ; {Aij - %]5(%%),

=1 j

where:

« A;; represents the edge weight between nodes % and j; see Adjacency
matrix;

k; and k; are the sum of the weights of the edges attached to nodes ¢ and
J, respectively;

em is the sum of all of the edge weights in the graph;

e [N is the total number of nodes in the graph;
ec; and c¢; are the communities to which the nodes 7 and 7 belong; and
o4 is Kronecker delta function:

5(ci,c;) = 1 if ¢; and c¢; are the same cluster
v 0 otherwise



Louvain cluster] NE (Blondel et. al., Journal of Statistical mechanics, 2008)

 Community detection is similar to clustering but only requires a network

* Maximizing the modularity Q is NP hard

* Louvain algorithm two phases:

e Step 1: finding local maxima

* Each node in the network is assigned to its own community and there is a pre-
determined order of nodes

* For each node i, move i to the community of each neighboring node, calculate AQ
* Move i to the community where AQ increases most and is positive
* Go to the next node
* Stop if no modularity increase can occur
e Step 2: reduce each community to a single node and build a graph

* Repeat both steps on the new network and stop if Q can not be increased



Louvain clusteri NE (Blondel et. al., Journal of Statistical mechanics, 2008)

8 13
Modularity Community
OptimizatV \/‘\ggregation
7 14
2nd pass 26 24

— @2 P

Figure 1. Visualization of the steps of our algorithm. Each pass is made of
two phases: one where modularity is optimized by allowing only local changes
of communities; one where the communities found are aggregated in order to
build a new network of communities. The passes are repeated iteratively until
no increase of modularity is possible.

* The algorithm provides a decomposition
of the network into communities for
different levels of organization

e Computational complexity:
linear in # of edges O(N)

* Resolution y (Reichardt and Bornholdt,

Physical Review E 2006):

1 kik;
Q =%EZ Aij_V% 5(ci, ¢)
i

* Smaller y -> fewer number of clusters
(y = 0, one cluster)

e Can not manually set the number of
clusters (automatic determination

given y)



Louvain cluster] NE (Blondel et. al., Journal of Statistical mechanics, 2008)

* Implementation in Seurat
e Construct weighted graph by KNN after PCA with k = 20 by default
* Weights set Jaccard similarity in the neighbors: proportion of shared overlap in their
local neighbors
* Default resolution 0.8

* Problem of Louvain clustering: may find arbitrarily badly connected communities
* Only consider individual node movements
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Leiden clusteri NE (Traag et. al., Scientific reports, 2019)

Guarantee that the communities are well connected

An updated phase 1 in Leiden clustering:
* Local moving of the nodes like in the Louvain clustering to get an initial partition P
* Refinement P efined by splitting a community in the initial partition into multiple
subcommunities
* Prefineq Starts with a singleton partition
* Locally merge nodes if they are not on the same community in Prefinedq but are
within the initial partition P
* A node randomly select which community to merge among communities that
increase

* Phase 2: create aggregate network where each node is a community in phase 1

e Computationally faster than Louvain clustering by an improved implementation of local
moving phase

* Default clustering method in Scanpy



Leiden cluster] NE (Traag et. al., Scientific reports, 2019)
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Run time, normalized by RtsneKmeans

Clustering methods for scRNA-seq

Benchmarking study (Duo et. al., FL00OResearch, 2018)
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Adjusted rand index (ARI)

A measurement comparing clustering results with true labels
* Invariant to permutations of labels

* Rand index

Given a set of n elements S = {01, ..., 0, } and two partitions of .S to compare,
X ={Xy,...,X.,}, apartition of Sinto rsubsets, and Y = {Y7,...,Y;}, a partition of Sinto s subsets, define the
following:

e a, the number of pairs of elements in .S that are in the same subset in X and in the same subsetin Y

b, the number of pairs of elements in .S that are in different subsets in X and in different subsets in Y’
« ¢, the number of pairs of elements in S that are in the same subset in X and in different subsets in Y’
e d, the number of pairs of elements in .S that are in different subsets in X and in the same subsetin Y

The Rand index, R, is:['][]

a-+b a-+b

at+b+c+d (%)

* Adjusted rand index: adjust by a null model under permutations



SC3 (Kiselev et. al. Nature Methods 2017)

Genes

Run k-means with different data processing methods

Input Gene Filter Distances Transformations d range Consensus
Euclidean PCA
Pearson Laplacian IR o
Spearman
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Get a consensus clustering result across different k-means rounds
* Calculate cell-cell similarity matrix by the averaging binary similarity matrix across all

clustering results
* Perform hierarchical clustering with complete agglomeration

Increase robustness compared to a single-round of k-means
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|dentify rare cell types: GiniClust

* A gene that is only expressed highly in a rare cell type may be
filtered out in the HVG selection step

* Then the rare cell type may not be identified as a separate
cluster
* Gini index can better identify marker gene for rare cell types
* Gini index is a robust version of CV
* Fano factor: 0?/u (not scale invariant)

3 versions, Yuan group)
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e Consensus clustering using both Gini index and Fano factors



|dentify rare cell types: RacelD (Grunet. al., Nature 2015)

* Rare cell types (tiny clusters) are challenging to identify in a clustering algorithm (like k-means)

* Coreidea: a

* Apply a clustering algorithm (k-means)
* Detect outlier cells within each cluster
* Fit mean-variance relationship across genes within a cluster
* Assume that each gene follows a NB distribution, identify cells
where expression levels for a few genes (2 by default) are off

y=0.1x+1.15-x+ 0.1

10

log, variance

e Qutlier cells are further merged to form rare cell type clusters

log, mean

* Computational cost is relatively high
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Definition of a cell type

e A cellular phenotype that is robust across datasets, identifiable based on expression of specific
markers (i.e. proteins or gene transcripts), and often linked to specific functions

* Partly subjective and can change over time
* New technologies allow for a higher resolution view of cells
» Specific “sub-phenotypes” that were not considered biologically meaningful are found to
have important biological implications

° Ce“ types have A Ne:;:rons Non-ne-urons
hierarchical organization CNS"F"W moewons |
(Zeng, Cell 2022) I B — ?éofm*ﬁ‘**ﬂ' [l

s e Da-ﬁrlmﬂmn--im-m e L o R

* Dynamic changes of cell types
Cell differentiation Cell reprogramming
‘o3t '
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UMAP2

Cell type annotation

* Assign a cell type to each cluster
Marker genes: Genes that are known to be associated with a particular cell type
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Cell type annotation

* Manual cell type annotation

* Visualize known marker genes of major cell types to annotate the clusters
* Hard to perform if cell types are unknown
* |dentify top differentially expressed genes for each cluster and link those with marker
genes
* Wilcoxon rank-sum test comparing cells in cluster j with (all) other cells
* Labor intensive and no consensus annotation

* Automatic cell type annotation

e Use pre-defined sets of markers
* Use GPT-4

* Use pre-existing annotated scRNA-seq data (later lectures)
* Traditional methods like linear regression and SVM
* Transfer learning using deep learning



Garnett (Pliner et. al., Nature Methods 2019)

e Coreidea:

* Define cell markers and cell type hierarchy
* Train a cell type classifier

Identify representative cells to train on
* Aggregated marker score for each cell j and cell

type ¢
Sej =Y Th;
keG,

* Ty, is some transformed gene expression so
that expression levels across genes are
comparable

* Gene expression is set to 0 if it is too low
(thresholding to make it less noisy)

C; = 0.25 x g;

e Perform Louvain clustering and randomly
choose equal number of cells for each cluster

a Define cell markers

>CD34
expressed: CD34,
PROM1

THY1, ENG, KIT,

>Natural killer cells
expressed: NCAM1, FCGR3A

expressed: CD14, FCGR1A, CD68,
S100A12

>B cells

expressed: CD19,
>T cells _’
expressed: CD3D, CD3E, CD3G

>CD4 T cells
expressed: C
subtype of: T cells

>CD8 T cells
expressed: CD8A, CD8B
subtype of: T cells

A, CDI1C, BATF3,

(1) Find representative cells for
child nodes using markers

-y B cells

o .°,.__>’..Tcells
o

° N\

(3) Classify cells at
permissive threshold

.« Outgroup

B‘(‘:ells Tcells ... Unknown (4) Repeat for nodes
* o s with further children
o 0 o®

Generate cell type
hierarchy

Root

Monocytes

B cells

Natural >
killer cells T cells

CcDs8 CD4

T cells T cells

(2) Train multinomial classifier
(elastic net regression)

(Intercept)
PROM1
ENG
CD34
KIT
GNLY
FCGR3A
NCAM1
CcD1C
THBD
BATF3
IL3RA




Cel |ASSigﬂ (Zhang et. al., Nature Methods 2019)

e Coreidea:
e Define cell markers
e Build a hierarchical model with latent cell type variables

* Calculate posterior probabilities that a cell belong to a specific cell type
* One drawback: not using the clustering result
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Cel |ASSign (Pliner et. al., Nature Methods 2019)

* The hierarchical model * Priors for parameters
* Latent categorical indicator 54 ~ log — normal (5’ 02)
z, = cif cell n of type c p(zn =c) =m,
* Mixture model : p,. = 1if gene g is a marker (m1,...,m¢) ~ Dirichlet (a, ..., a)
for cell ¢ * Noise model
E [ynglzn = C] = Hnge ynglzn =c~NB (ungca ¢ngc)
 EM algorithm to solve the model (not easy)

where
Log mean expression Cell type specific Other covariajtfs (incl-batch)

— —~ P h

log finge = logs, +  dgepge + Bygo + Z _, BopZpn

~—— ~ p=
Cell size factor Base expression

with the constraint that §g.> 0.



SCType (Lanevski et. al., Nature Communications 2022)

* Largest marker gene database for mouse and human cell types
* Integrate two existing databases: CellMarker and PanglaoDB

e Core idea:
* Define cell-type specificity of markers

Sf 1 _ |M; |, —min(|M]|,)
? mazx(|M|,)—min(|M]|,)

* Perform clustering and assign a cell type to a cluster
* Transform data into z-scores and multiply by the cell-type specificity
e Calculate marker-enrichment-score: an average contrast between marker genes and
negative marker genes for each cell and each cell type

* Sum up the contrast across all cells in the cell cluster, and assign the cluster with the cell
type that has the largest score



b

GPTCel |type (Hou and Ji, Nature Methods 2024)

B

Identify cell types of human prostate cells using the following markers. Identify one cell
type for each row. Only provide the cell type name.

CR2, CD24, FAS, CXCR3, CD1c

KLK3, KRT8, KLK2, MSMB, ACPP, KLK1, KLK4

MMRN?1, FLT4, RELN, CCL21, PROXL, LYVE1

TPSAB1, FCER1A, TPSB2, KIT, CD69, HDC

ACTA2, MYO1B, ACTA2, ANPEP, DES, MCAM, PDGFRB, CSPG4

1. Dendritic cells

2. Luminal epithelial cells

3. Lymphatic endothelial cells
4. Mast cells

5. Pericytes

Be more specific

1. Myeloid dendritic cells (mDCs)

2. Prostate secretory luminal epithelial cells
3. Prostate lymphatic endothelial cells

4 . Prostate tissue-resident mast cells

5. Prostate vascular pericytes

Identify cell types of human prostate cells using the following markers. Identify one cell type
for each row. Only provide the cell type name. Some could be a mixture of multiple cell types.
Some could be unknown cell types.

KLK3, KRT8, KLK2, MSMB, ACPP, KLK1, KLK4

MMRN1, FLT4, RELN, CCL21, PROX1, LYVE1

CD69, IL7R,, CD3D, CD3E, CD3G,ACTA2, MYO1B, ACTA2, ANPEP, PDGFRB, CSPG4
DDX49,LOC105371196,MTND1P30,LOC105373682, TAGLN2,ZNF836,ZNF677,COILP1

1. Prostate epithelial cells
2. Lymphatic endothelial cells

3. T cell and smooth muscle cell mixture

4. Unknown cell type

The package automatically generate prompt
message

GPT-4 is able to identify unknown cell types
Systematic benchmarking in the paper



GPTCel |type (Hou and Ji, Nature Methods 2024)

d

Running time: log,(seconds) o

Datasets

Average
score

0.8

0.6
0.4
0.2

Non-model mammal - 0.81 0.73 0.35
Lungcancer - 0.85 01715 0.6 0.6 0.35
Coloncancer - 0.86 0.71 0.64 0.36 0.57

Literature - 0.83 0.51 0.34
BCL - 0.83 0.61 0.56 0.56 0.11
TS 0.58 0.45 0.45 0.48 0.28
Azimuth - OI52 0.45 0.33
GTEXx - 0.61 0.37 0.44 0.46 0.27
HCL - 0.48 0.31 0.39 0.34 0.18
MCA - 0.52 0.25 0.38 0.28 0.18
T T T T 1
GPT-4 GPT-3.5 SingleR ScType CellMarker2.0
Methods
Dataset ® BCL GTEx ® Lung cancer TS f
15 — ® Colon cancer ® HCL MCA . 0.100
—~ 0.075 A
2 . ()
10 =
=]
W d § 0.050 -
5 1 P o
L - < 0.025 1
= ,
O - I I I I O T T
GPT-4 ScType GPT-3.5 SingleR 20 40
Methods

Number of cell types



Related papers

* Blondel, V. D, Guillaume, J. L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of
statistical mechanics: theory and experiment, 2008(10), P10008.

* Reichardt, J., & Bornholdt, S. (2006). Statistical mechanics of community detection. Physical review E, 74(1), 016110.

* Traag, V. A., Waltman, L., & Van Eck, N. J. (2019). From Louvain to Leiden: guaranteeing well-connected communities. Scientific
reports, 9(1), 5233.

* Duo, A, Robinson, M. D., & Soneson, C. (2018). A systematic performance evaluation of clustering methods for single-cell RNA-seq
data. F1000Research, 7.

* Kiseleyv, V. Y,, Kirschner, K., Schaub, M. T., Andrews, T., Yiu, A, Chandra, T,, ... & Hemberg, M. (2017). SC3: consensus clustering of
single-cell RNA-seq data. Nature methods, 14(5), 483-486.

* Dong, R., & Yuan, G. C. (2020). GiniClust3: a fast and memory-efficient tool for rare cell type identification. BMC bioinformatics, 21,
1-7.

* Grin, D., Lyubimova, A., Kester, L., Wiebrands, K., Basak, O., Sasaki, N., ... & Van Oudenaarden, A. (2015). Single-cell messenger
RNA sequencing reveals rare intestinal cell types. Nature, 525(7568), 251-255.

* Pliner, H. A., Shendure, J., & Trapnell, C. (2019). Supervised classification enables rapid annotation of cell atlases. Nature
methods, 16(10), 983-986.

* Zhang, A. W,, O’Flanagan, C., Chavez, E. A., Lim, J. L., Ceglia, N., McPherson, A, ... & Shah, S. P. (2019). Probabilistic cell-type
assignment of single-cell RNA-seq for tumor microenvironment profiling. Nature methods, 16(10), 1007-1015.

* lanevski, A., Giri, A. K., & Aittokallio, T. (2022). Fully-automated and ultra-fast cell-type identification using specific marker
combinations from single-cell transcriptomic data. Nature communications, 13(1), 1246.

* Hou, W, & i, Z. (2024). Assessing GPT-4 for cell type annotation in single-cell RNA-seq analysis. Nature Methods, 1-4.



