STAT 35510 Lecture 5

Spring, 2024
Jingshu Wang

Outline

- scRNA-seq denoising methods
- Trajectory analysis

scRNA-seq denoising

- scRNA-seq data is very noisy

Core idea:

- Use gene-gene dependence or cell-cell similarity to remove noise
- "smooth" over similar genes or similar cells
- Denoising is also described as "imputation", however this is NOT a missing data problem!

How can denoising help?

900 PBMC cells (immune cells in peripheral blood) with labels [Zheng et. al., 2017]

T cells

Improve recovering gene expression patterns

Identify the marker genes in each cell type

After Denoising

MAGIC (Dijk et. al., Cell 2018)

- Use cell-cell similarity to improve data quality
- Core idea
- Calculate cell-cell similarity matrix (KNN graph) A
- scRNA-seq normalization and PCA
- Gaussian kernel transformation on the Euclidean distance

$$
A(i, j)=e^{-\left(\frac{D i s t(j, j}{\sigma}\right)^{2}}
$$

- σ is actually cell dependent like tSNE $\sigma(i)=$ distance $(i$, neighbor $(i, k a))$
- Only retain k nearest neighbors to retain sparsity of A
- Make A symmetric and positive definite
- Covert A into a transition probability matrix M

$$
M(i, j)=\frac{A(i, j)}{\sum_{k} A(i, k)}
$$

- Imputation (denoising)

$$
D_{\text {imputed }}(i, j)=\sum_{k=1}^{n} M^{t}(i, k) * D(k, j)
$$

- t : Estimated diffusion time

MAGIC (Dijk et. al., Cell 2018)

- Understanding M^{t} (Diffusion maps, Coifman and Lafon, Appl. Comput. Harmon. Anal., 2006)
- Small eigenvalues in M can be due to technical noise, M^{t} reduces the importance of noise dimensions, down-weighting spurious cell neighbors
- From the perspective of diffusion maps
- $\quad M^{t}(i, j)$ represents transition probability from i to j in t steps
- The authors argued that the first few steps remove noise, while signals will be removed for larger t

MAGIC

- Find the optimal t
- For each t, calculate

R-sq(data_t, data_(t-1)) =1-SSE(data_t, data_(t-1))/SST(data_t, data_(t-1))

- Choose the smallest t where Rsq is small enough
- This may over-smooth the data

SAVER (Huang et. al., Nature Methods 2018)

- Use gene-gene dependence to improve data quality
- Core idea
- Assume the data distribution

$$
\begin{aligned}
& Y_{g c} \sim \operatorname{Poisson}\left(s_{c} \lambda_{g c}\right) \\
& \lambda_{g c} \sim \operatorname{Gamma}\left(\alpha_{g c}, \beta_{g c}\right)
\end{aligned}
$$

- Use Poisson regression to build a prediction model of one gene on all other genes
- Add Lasso penalty to increase prediction accuracy
- More principled to use NB regression, but here the purpose is prediction, use Poisson to reduce computational cost

$$
\log E\left(Y_{g c} / s_{c} \mid Y_{g^{\prime} c}\right)=\log \mu_{g c}=\gamma_{g 0}+\sum_{g^{\prime} \neq g} \gamma_{g g^{\prime}} \log \left[\frac{Y_{g^{\prime} c}+1}{s_{c}}\right]
$$

- Use $\mu_{g c}$ as denoised value can over-smooth the data, predict $\lambda_{g c}$ to faithfully recover true biological randomness of the data

SAVER (Huang et. al., Nature Methods 2018)

- Use gene-gene dependence to improve data quality
- Core idea
- Use $\mu_{g c}$ as denoised value can over-smooth the data, predict $\lambda_{g c}$ to faithfully recover true biological randomness of the data

$$
\left.\begin{aligned}
& Y_{g c} \sim \operatorname{Poisson}\left(s_{c} \lambda_{g c}\right) \\
& \lambda_{g c} \sim \operatorname{Gamma}\left(\alpha_{g c}, \beta_{g c}\right)
\end{aligned} \quad \lambda_{g c} \right\rvert\, Y_{g c}, \hat{\alpha}_{g c}, \hat{\beta}_{g c} \sim \operatorname{Gamma}\left(Y_{g c}+\hat{\alpha}_{g c}, s_{c}+\hat{\beta}_{g c}\right)
$$

- Empirical Bayes estimate of the variance parameter
- Maximize marginal likelihood of three models:

Constant variance / dispersion / Fano factor

- Pick the model that has the largest maximal variance

SAVER (Huang et. al., Nature Methods 2018)

DCA (Eraslan et. al., Nature Communications 2019)
b

$$
\log V=U V^{T}
$$

$$
X=g \circ f(X) \quad U=f(X)
$$

Neural Networks

- Use an autoencoder (non-linear factor model)
- Use the ZINB / NB negative log-likelihood as the loss function when training the autoencoder
- Similar methods

- scVI (Lopez et. al., 2018): use variational autoencoder + batch effect correction
- SAVER-X (Wang et. al., 2019): pretrain the autoencoder on other datasets to borrow information + preserve biological randomness as in SAVER

ALRA (Linderman et. al., Nature Communications 2022)

- Simply uses a linear factor model for matrix denoising

$$
\tilde{X}=X+E \quad X=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{T}
$$

- Assume that the "true" gene expression matrix (signal matrix) is low-rank and sparse
A) Measured Expression

B) Low Rank Approx

C) Adaptive Thresholding

D) Rescaled, Imputed Data

- Idea for preserving the zeros: estimated value of the true zeros in SVD should have a symmetric distribution around 0 .
- Also implicitly assume that nonzero values are large enough

ALRA (Linderman et. al., Nature Communications 2022)

Trajectory inference (TI) for scRNA-seq

- Understand the cell fate decisions in biological processes, such as differentiation, immune response, or cancer expansion with scRNA-seq data
- Infer or assume a type of underlying trajectory structure

Cycle

Linear

Bifurcation

Multifurcation

Tree

Connected graph

Disconnected graph

Saelens W. et. al., Nat. Biotech. 37, 547-554(2019)

- Computationally project and order the cells along the trajectory
- The orders of the cells are also called the pseudotimes
- There already exists more than 70 TI methods

(For a comprehensive benchmarking, see Saelens W. et. al., Nat. Biotech. 37, 547-554(2019))

Slingshot (Street et. al., BMC Genomics, 2018)

- Idea: build a connection graph for the clusters

- Main steps:
- Dimension reduction and clustering
- Treat clusters as nodes in a graph and draw a minimum spanning tree (MST)
- MST: spanning tree whose weights (sum of its edge weights) is the smallest among spanning trees
- Cut property: Given any cut in an edge-weighted graph (with all edge weights distinct), the crossing edge of minimum weight is in the MST of the graph.
- Tutorial: https://algs4.cs.princeton.edu/43mst/
- Edge weight: distance between two clusters

$$
d^{2}\left(\mathcal{C}_{i}, \mathcal{C}_{j}\right) \equiv\left(\bar{X}_{i}-\bar{X}_{j}\right)^{T}\left(S_{i}+S_{j}\right)^{-1}\left(\bar{X}_{i}-\bar{X}_{j}\right)
$$

Slingshot (Street et. al., BMC Genomics, 2018)

- Main steps:
- Estimate the lineage (trajectory) structure
- Dimension reduction and clustering
- Treat clusters as nodes in a graph and draw a minimum spanning tree (MST)
- Undirected tree -> directed tree: user provided initial cluster
- Perform constrained MST if users provide the leaf node
- Drawback: what if the lineage structure is not a tree?
- Estimate a cell pseudotime
- For each lineage (path from initial node to a leaf node), fit a principal curve and project the cells onto the principal curve to determine the pseudotime

- Challenge: shared lineages should have overlapping principal curves and cells belonging to multiple lineages should have similar pseudotime estimates

Slingshot (Street et. al., BMC Genomics, 2018)

- Principal curve (Hastie and Stuetzle, JASA 1989)

- Generalization of getting first (linear) PC

$$
\mathbf{x}_{i}=\mathbf{f}\left(\lambda_{i}\right)+\mathbf{e}_{i}
$$

$$
\lambda_{\mathbf{f}}(\mathbf{x})=\sup _{\lambda}\left\{\lambda:\|\mathbf{x}-\mathbf{f}(\lambda)\|=\inf _{\mu}\|\mathbf{x}-\mathbf{f}(\mu)\|\right\}
$$

Dim 1

- Shared

Dim 1

PAGA (Wolf et. al., Genome Biology, 2019)

- Construct KNN graph of the data (use any reasonable method, can apply denoising first)
- Clustering and determine connectivity between clusters based on the KNN graph
- $\varepsilon_{i j}^{\text {sym }}$: number of edges (outgoing and ingoing) between cluster i and j
- Under the "null" where there is no connection between the two clusters

$$
\begin{aligned}
& p_{\text {arbit }}\left(\varepsilon \mid e_{i}, e_{j}, n_{i}, n_{j}, n\right) \simeq \mathcal{N}\left(\varepsilon \mid \hat{\varepsilon}^{\mathrm{sym}}\left(e_{i}, e_{j}, n_{i}, n_{j}, n\right), \hat{\sigma}^{\mathrm{sym}}\left(e_{i}, e_{j}, n_{i}, n_{j}, n\right)\right) \\
& \text { with } \quad \hat{\varepsilon}^{\mathrm{sym}}\left(e_{i}, e_{j}, n_{i}, n_{j}, n\right)=\frac{e_{i} n_{j}+e_{j} n_{i}}{n-1} \\
& \hat{\sigma}^{\mathrm{sym}}\left(e_{i}, e_{j}, n_{i}, n_{j}, n\right)=\frac{e_{i} n_{j}\left(n-n_{j}-1\right)+e_{j} n_{i}\left(n-n_{i}-1\right)}{(n-1)^{2}}
\end{aligned}
$$

- n_{i} : number of nodes in cluster i, e_{i} : number of outgoing edges of cluster i
- Cluster connectivity score:

$$
c_{i j}= \begin{cases}\frac{\varepsilon_{i j}^{\text {sym }}}{\hat{\varepsilon}^{\mathrm{sym}}\left(e_{i}, e_{j}, n_{i}, n_{j}, n\right)} & \text { if } \varepsilon_{i j}^{\mathrm{sym}}<\hat{\varepsilon}^{\mathrm{sym}}\left(e_{i}, e_{j}, n_{i}, n_{j}, n\right) \\ 1 & \text { else. }\end{cases}
$$

- The paper discussed that "equivalently", if each cluster has a Gaussian density, cluster connectivity score reflects overlapping region of the density functions
- Thresholding cluster connectivity score to get the final trajectory structure

PAGA (Wolf et. al., Genome Biology, 2019)

- Initialize UMAP with the coarse cluster graph leads to better visualization of the data

PAGA (Wolf et. al., Genome Biology, 2019)

- Construct KNN graph of the data (use any reasonable method, can apply denoising first)
- Clustering and determine connectivity between clusters based on the KNN graph
- Pseudotime estimation for each cell
- Pseudotime defined as the distance of a continuous progression along a manifold
- Based on a diffusion maps model on the cell-cell graph (like MAGIC, cell-cell transition matrix T)
- Some highlights of the algorithm
- Laplace transformation

$$
\widetilde{L}=I-\widetilde{T}, \quad \widetilde{T}=D^{\frac{1}{2}} T D^{-\frac{1}{2}}
$$

- Calculate diffusion pseudotime based on the eigenvectors and eigenvalues of L (or equivalently, T)

$$
\widetilde{\operatorname{dpt}}^{2}\left(\iota_{1}, \iota_{2}\right)=\sum_{r=2}^{n_{\text {nodes }}}\left(\frac{\lambda_{r}}{1-\lambda_{r}}\right)^{2}\left(\widetilde{v}_{r \iota_{1}}-\widetilde{v}_{r \iota_{2}}\right)^{2}
$$

- Making using of trajectory structure: assign ∞ to cell-cell distance for cells in disconnected clusters

$$
\widetilde{\operatorname{dpt}}\left(\iota_{1}, \iota_{2}\right)=\sum_{r=n_{\text {comps }}+1}^{n_{\text {nodes }}}\left(\frac{\lambda_{r}}{1-\lambda_{r}}\right)^{2}\left(\widetilde{v}_{r \iota_{1}}-\widetilde{v}_{r \iota_{2}}\right)^{2}+\sum_{r=1}^{n_{\text {comps }}}\left(\widetilde{v}_{r \iota_{1}}-\widetilde{v}_{r \iota_{2}}\right)^{2} .
$$

VITAE (Du et. al., BioRXiv, 2023)

- Combine a graph-based method and direct modeling of the data using variational autoencoder
- Assume a complete graph $\mathcal{G}=(\mathcal{N}, \mathcal{E})$
- $\mathcal{N}(\mathcal{G}):$ a vertex denotes a distinct cell state / type
- $\mathcal{E}(\mathcal{G})$: an edge denotes a possible transition between two cell states/types
- A cell position $\widetilde{\boldsymbol{w}}_{i} \in[0,1]^{k}$ on the graph

$$
\tilde{\boldsymbol{w}}_{i}= \begin{cases}\boldsymbol{e}_{j} & \text { if cell } i \text { is on vertex } j \in\{1, \cdots, k\} \\ w_{i} \boldsymbol{e}_{j_{1}}+\left(1-w_{i}\right) \boldsymbol{e}_{j_{2}} & \text { if cell } i \text { is on the edge between vertices } j_{1} \text { and } j_{2}\left(j_{1} \neq j_{2}\right)\end{cases}
$$

- The trajectory backbone, \mathcal{B}, as a subgraph of \mathcal{G}

$$
\mathcal{N}(\mathcal{B})=\mathcal{N}(\mathcal{G})
$$

$$
\mathcal{E}(\mathcal{B})=\left\{\left(j_{1}, j_{2}\right) \in \mathcal{E}(\mathcal{G}): \sum_{i} \mathbb{1}_{\left\{\tilde{w}_{i j_{1}}>0, \tilde{w}_{i j_{2}}>0\right\}}>0\right\}
$$

VITAE (Du et. al., BioRXiv, 2023)

$w_{i} \stackrel{\text { i.i.d. }}{\sim} \operatorname{Uniform}(0,1)$
$c_{i} \stackrel{\text { i.i.d. }}{\sim} \operatorname{Multinomial}(1, \boldsymbol{\pi})$,
$w_{i} \Perp c_{i}$
$\tilde{\boldsymbol{w}}_{i}=w_{i} \boldsymbol{a}_{\boldsymbol{c}_{i}}+\left(1-w_{i}\right) \boldsymbol{b}_{\boldsymbol{c}_{i}}$

	Gene $_{1}$	Gene $_{2}$	Gene $_{3} \ldots$
Cell $_{1}$	1	2	4
Cell_{2}	0	1	0
Cell_{3}	1	1	3
Cell_{4}	0	2	1
Cell_{5}	1	1	5
Cell_{6}	3	0	1
Cell_{7}	2	0	2
\cdots			

- Assume latent variables $\boldsymbol{Z}_{i} \in \mathbb{R}^{d}$ satisfy

$$
\boldsymbol{Z}_{i} \mid \tilde{\boldsymbol{w}}_{i} \sim \mathcal{N}_{d}\left(\boldsymbol{U} \tilde{\boldsymbol{w}}_{i}, \boldsymbol{I}_{d}\right)
$$

A non-linear mapping from the latent space to the
high-dimensional observed data

Model f_{g} by a neural network

- \boldsymbol{U} : unknown positions of the vertices in \mathbb{R}^{d}
- $\boldsymbol{X}_{i}:$ cell-specific confounding covariates (data source, cell cycle, et. al.)
- We also assume a mixture prior on $\widetilde{\boldsymbol{w}}_{i}$

VITAE (Du et. al., BioRXiv, 2023)

- Key contribution: Simultaneous batch effect removal and trajectory analysis
- Loss function:

Reconstruction loss

$$
\begin{aligned}
L= & -(1-\alpha) \sum_{i=1}^{N} \mathbb{E}_{q\left(\boldsymbol{Z}_{i} \mid \boldsymbol{Y}_{i}, \boldsymbol{X}_{i}\right)} \log p\left(\boldsymbol{Y}_{i} \mid \boldsymbol{Z}_{i}, \boldsymbol{X}_{i}\right) \\
& +\beta \sum_{i=1}^{N} D_{\mathrm{KL}}\left(q\left(\boldsymbol{Z}_{i} \mid \boldsymbol{Y}_{i}, \boldsymbol{X}_{i}\right) \| p\left(\boldsymbol{Z}_{i}\right)\right) \\
& -\alpha \sum_{i=1}^{N} \log p\left(\boldsymbol{Y}_{i} \mid \boldsymbol{Z}_{i}=\mathbf{0}_{d}, \boldsymbol{X}_{i}\right) \\
& +\kappa \Omega_{\mathrm{MMD}}\left(\mathcal{D}_{N}\right) \\
& +\gamma \Omega_{\mathrm{Jacobian}}\left(\mathcal{D}_{N}\right)
\end{aligned}
$$

- Four penalty terms:
- β-VAE:
- Set $\beta>1$ to encourage posteriors of \boldsymbol{Z}_{i} to lie along trajectory backbone
- Adjust for confounding \boldsymbol{X}_{i} and batch effects
- Soft penalty: help decorrelate \boldsymbol{Z}_{i} from \boldsymbol{X}_{i}
- MMD loss: used across replicates where the cell populations are known to be the same
- Jacobian regularizer
- enhance stability in optimization

$$
\Omega_{\mathrm{Jacobian}}\left(\mathcal{D}_{N}\right)=\sum_{i=1}^{N} \sum_{j=1}^{d} \sum_{g=1}^{G} \mathbb{E}_{q\left(\boldsymbol{Z}_{i} \mid \boldsymbol{Y}_{i}, \boldsymbol{X}_{i}\right)}\left[\left(\frac{\partial \boldsymbol{Z}_{i j}}{\partial \boldsymbol{Y}_{i g}}\right)^{2}\right]
$$

GPfates (Lonnberg et. al., Science Immunology, 2017)

- Model (normalized and dimension-reduced) scRNA-seq data as generated from a mixture of Gaussian processes

$$
\begin{array}{r}
X=f_{c}(t)+\varepsilon \quad p(F \mid T)=\prod_{c=1}^{C} \mathcal{N}\left(f_{c} \mid 0, \boldsymbol{K}_{t}^{c}\right) \\
k\left(t_{n_{1}}, t_{n_{2}}\right)=\sigma_{\mathrm{SE}}^{2} \exp \left(-\frac{\left|t_{n_{1}}-t_{n_{2}}\right|^{2}}{2 l_{\mathrm{SE}}^{2}}\right)
\end{array}
$$

- Infer posterior $t \mid X$ to estimate each cell's pseudotime
- Prior distribution $\quad p\left(t_{n}\right)=\mathcal{N}\left(\mathrm{day}_{n}, \sigma_{\text {prior }}^{2}\right)$
- Make use of the calendar time
- Use variational Bayes and EM to infer parameters
- For interpretation of each GP component, only allow one branching point

Waddington-OT (Schiebinger et. al., Cell, 2019)

- Make use the cell collection time and assume that cells having a later collection time are descendants of the earlier collected cells
- Estimate transition between cells instead of pseudotime
- Optimal transport coupling

$$
\begin{aligned}
\pi_{s, t}(\epsilon)=\underset{\pi}{\operatorname{minimize}} & \iint c(x, y) \pi(x, y) d x d y-\epsilon \iint \pi(x, y) \log \pi(x, y) d x d y \\
\text { subject to } & \int \pi(x, \cdot) d x=\mathbb{Q}_{s} \\
& \int \pi(\cdot, y) d y=\mathbb{P}_{t} .
\end{aligned}
$$

- Corresponding optimization problem

$\hat{\pi}_{t_{i}, t_{i+1}}=\underset{\pi}{\arg \min } \sum_{x \in S_{i}} \sum_{y \in S_{i+1}} c(x, y) \pi(x, y)-\epsilon \iint \pi(x, y) \log \pi(x, y) d x d y$

$$
+\lambda_{1} \mathrm{KL}\left[\sum_{x \in S_{i}} \pi(x, y) \| d \hat{\mathbb{P}}_{t_{i+1}}(y)\right]+\lambda_{2} \mathrm{KL}\left[\sum_{y \in S_{i+1}} \pi(x, y) \| d \hat{\mathbb{Q}}_{t_{i}}(x)\right]
$$

Related papers

- Van Dijk, D., Sharma, R., Nainys, J., Yim, K., Kathail, P., Carr, A. J., ... \& Pe'er, D. (2018). Recovering gene interactions from single-cell data using data diffusion. Cell, 174(3), 716-729.
- Huang, M., Wang, J., Torre, E., Dueck, H., Shaffer, S., Bonasio, R., ... \& Zhang, N. R. (2018). SAVER: gene expression recovery for single-cell RNA sequencing. Nature methods, 15(7), 539-542.
- Eraslan, G., Simon, L. M., Mircea, M., Mueller, N. S., \& Theis, F. J. (2019). Single-cell RNA-seq denoising using a deep count autoencoder. Nature communications, 10(1), 390.
- Lopez, R., Regier, J., Cole, M. B., Jordan, M. I., \& Yosef, N. (2018). Deep generative modeling for single-cell transcriptomics. Nature methods, 15(12), $1053-1058$.
- Wang, J., Agarwal, D., Huang, M., Hu, G., Zhou, Z., Ye, C., \& Zhang, N. R. (2019). Data denoising with transfer learning in single-cell transcriptomics. Nature methods, 16(9), 875-878.
- Linderman, G. C., Zhao, J., Roulis, M., Bielecki, P., Flavell, R. A., Nadler, B., \& Kluger, Y. (2022). Zero-preserving imputation of single-cell RNA-seq data. Nature communications, 13(1), 192.
- Street, K., Risso, D., Fletcher, R. B., Das, D., Ngai, J., Yosef, N., ... \& Dudoit, S. (2018). Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC genomics, 19, 1-16.
- Wolf, F. A., Hamey, F. K., Plass, M., Solana, J., Dahlin, J. S., Göttgens, B., ... \& Theis, F. J. (2019). PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology, 20, 1-9.
- Du, J. H., Chen, T., Gao, M., \& Wang, J. (2023). Model-based trajectory inference for single-cell rna sequencing using deep learning with a mixture prior. bioRxiv, 2020-12.
- Lönnberg, T., Svensson, V., James, K. R., Fernandez-Ruiz, D., Sebina, I., Montandon, R., ... \& Teichmann, S. A. (2017). Single-cell RNA-seq and computational analysis using temporal mixture modeling resolves TH1/TFH fate bifurcation in malaria. Science immunology, 2(9), eaal2192.
- Schiebinger, G., Shu, J., Tabaka, M., Cleary, B., Subramanian, V., Solomon, A., ... \& Lander, E. S. (2019). Optimal-transport analysis of single-cell gene expression identifies developmental trajectories in reprogramming. Cell, 176(4), 928-943.
- Coifman, R. R., \& Lafon, S. (2006). Diffusion maps. Applied and computational harmonic analysis, 21(1), 5-30.
- Hastie, T., \& Stuetzle, W. (1989). Principal curves. Journal of the American statistical association, 84(406), 502-516.

