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Outline

» “Post-estimation” inference in scRNA-seq

* Hypotheses testing after clustering

* Conditional tests
e Data thinning
e Simulate global null data

* Hypotheses testing after trajectory inference

* Hypotheses testing and gene property estimation after denoising



Post selection bias in linear regression

In linear regression, we may want to select a smaller model if number of covariates is too large

A naive procedure for linear regression inference with model selection
* Perform a variable selection procedure: stepwise with AIC/BIC, lasso, elastic net, ...

* Fit linear regression (OLS) only using the selected covariates
* Construct 95% confidence intervals (Bj — 1.966]-,,[;’]- + 1.964;)

* Test the hypothesis Hy: f; = 0 by rejecting when |,[§j/6j| > 1.96

These confidence intervals are invalid if model selection and inference in performed on the same

dataset

A possible solution is sample splitting:

split the data into two, one for model selection,

one for testing / constructing Cl
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Bias in post clustering differential testing

* True cell label for a cell i Z;, gene expression level for a gene g Y,
* Idea null hypothesis: Hy4: Z; L Yy
« Challenge: Z; is not observed, we can only obtain an estimate Z; = f(Y;.)
* Under Hyg, £ (Y;.) can still depend on Yi4 as £ () is learnt by the data and
f (¥;.) is a function of Y,
* Sample splitting would not help in unsupervised learning:

sample splitting makes £ (+) independent from from the data but Z; is still a
function of Y;,

(a) Data (b) Training set (c) Test set » (d)QQ plot
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Selected inference idea

* Selective inference methods developed by Witten group

e Assume that the gene expressions (after normalizing) follows multivariate
independent normal distributions

X MNnxq(lL’ L, Uzlq)

e Can be extended to allowing a known covariance matrix X across features
* Allow each cell to have a different mean vector y;

* A clustering algorithm provide a data-dependent partition of the observations

* For any pair of clusters, test for the null hypothesis whether the average of the
mean vectors of two estimated clusters are the same or not

_~~ o~ _—~ A~

N PP = .ol - _
H({)1 2}:,u,gl:,udé\z versus H{l 2}:u51;éu52

* Drawback: test for the global null: reject the null if any of the genes are
differentially expressed, only evaluates whether a split is true or false
* Maybe used to combine spurious clusters?



Selective inference idea

» Selective inference (high level idea)

Reject Hécl’cz} if Xz — Xz, ll2 is large enough
Need to know its null distribution conditioning on observed clustering result

P 6. (1Xg — X5,z = 3G, —%g,l2 | C1.C: € CX))

Not possible as the mean vectors of the cells are not fully under HéCl’CZ}
Need to condition on additional events to make the conditional null distribution
of the test statistics trackable px: {62, Go)) = PH({)CICE} (”Xa — Xzl > % — %zl

L 1 . _LA R
‘ C1,6 e CX) iy o X=nbs o x,

dir(Xé\1 —)_(52) = dir()_ca —R@) ), 1
(Gao et. al. JASA 2022) has shown that the test statistics follow a truncated chi-
square distribution
* The truncation event can be explicitly characterized if clustering algorithm
is hierarchical clustering (Gao et. al. JASA 2022) or k-means clustering

(Chen and Witten, JMLR 2023)
e Limitation: requires a clustering algorithm with clear analytical form



TN test (Zhang et. al., Cell Systems 2019)

* Work for “any” clustering algorithm (via approximations + sample splitting)
* Test for one gene at a time allowing for other genes to be truly differentially
expressed
* Strong distribution assumptions on the observed gene expressions
* When testing between two clusters, assume that the observed data comes from
a two-component Gaussian mixture
* Each component represents a cluster label
* Assume independence across genes (like the selective inference idea, should
allow a known covariance matrix X across features)

* Incorporate the data splitting idea
* One dataset for clustering, the other dataset for differential testing

, dataset 1
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TN test (Zhang et. al., Cell Systems 2019)

* Core steps
* Clustering approximation on dataset 1
* Apply any clustering algorithm to get the clustering result
 When comparing between two clusters, use a linear hyperplane to
approximate the clustering result

, dataset 1
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* Benefit: the clustering result becomes a known truncation event on the test
data

* Apply the same clustering result on the dataset 2



TN test (Zhang et. al., Cell Systems 2019)

* Core steps
* Clustering approximation on dataset 1
* Truncated normal test on dataset 2
* Fit truncated multivariate normal distribution on each cluster
* Test foreach gene g: Hoy: g1 = Ugo
e Estimate the null distribution (two-component Gaussian mixture)
under each Hy,,

Post-clustering data
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Data thin ﬂiﬂg (Neufeld et. al., Biostatistics 2024)

* A count splitting idea
* Key assumption

ind. .
X,; ~" Poisson(v;A;j), log (Aij) = Boj + B1jLi,  Bij, Li € R,
Xij observed scRNA-seq counts, L;: unknown true cluster labels

* This model is actually not enough as A;; are not the true gene expressions (much less

fluctuated and does not capture gene-gene dependence other than L;)
* Key property

X;?;ai“ | {Xi; = X5} "2S" Binomial (Xij,€), Xtest =X — Xtrain

Proposition 1 (Binomial thinning of Poisson processes (see Durrett 2019, Section 3.7.2)) If X;; ~

Poisson(vy;Aij), then Xgai“ and X%, as constructed in Algorithm 1, are independent. Further-

more, X%"‘in ~ Poisson(ey;A;;) and X%?St ~ Poisson((1 — €)7y;Asj).

* Given A;j, training data and test data are independent
* Get cluster labels of the cells from training data, test using test data

Main drawback: the framework ignores extra gene-gene dependence not captured by L;
Main advantage: flexible to work for any “post-estimation” inference task



ClusterDE (songet. al., BioRxiv 2024)

* Coreidea:
* Under the global null that the cell population is completely homogenous, generate synthetic data

that match the real data distributions

* Use scDesign3 to generate data:
Synthetic data follows a Gaussian copula multivariate NB distribution, and matches mean,

variance and gene-gene covariance with the real data
* Use synthetic data to generate null distribution of test statistics for each gene
* However, itis an invalid null distribution for the null Hy4: g1 = pgyo on real data

* Apply clustering algorithm both on real data and synthetic data
* As the synthetic data is generated under the global null, clustering algorithm results will be

totally different from the real data
 The method only work on two clusters at a time and allow the clustering algorithm to only

generate two clusters

* Calculate the same test statistics on real data and synthetic data to select differentially expressed

genes
* Instead of calculating the null distribution by generating multiple synthetic dataset, used a

symmetric idea (similar to knockoff) for multiple test using only one synthetic data



ClusterDE (songet. al., BioRXiv 2024)

Results from
homogenous cell
population data
simulated by
scDesign3
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Post trajectory inference differential testing

» After trajectory inference, researchers can be interested in different testing tasks:
* Gene expression change along the pseudotime (for a specific lineage or sub-trajectory)
* Differential gene expression between two lineages
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Harder tasks:
 Whether an estimated branching event is true or false
 Whether the trajectory structure is different under two different conditions



tradeSeq (Berge et. al. 2020)

* For a specific gene g, using a generalized additive model (GAM) to describe how the
observed count Yy; for cell i depends on the pseudotime, lineage and other covariates U;

( )/gi ™~ NB(:U’gw ¢g)
log (kg;) = Ny,
Mgi = ZlL:1 $q1(Tii) Zii + Uiy + log (N;)

N\

* T);: pseudotime of cell i, may depend on the lineage [
* Zj;: binary lineage indicator of the cell
* N;: library size

b

* Sg1(t): natural cubic spline function (basis functions shared across all genes and 5

4
lineages) =

K g °

Sqgi(t) = Zbk‘(t)/gglk g2
k=1 1 ,,
e Kselected by AIC (default K = 6 correspond to 6 knots) s

Pseudotime

* Knots placed at even quantiles of the estimates pseudotime



tradeSeq (Berge et. al. 2020)

Test for differentially expressed genes
* Testif a gene change along the pseudotime Hy: Bgix = By for any k, k'

 Testif a gene change between lineages: test if the mean gene expression change in any of
the pseudotime from a set of possible scaled pseudotimes
* Compute p-values based on the wald statistics
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Post estimating bias in testing after Tl

* tradeSeq treat the estimated pseudotime T; and and lineage positioning Z;; as known
* This can create a double-dipping issue

* Idea null hypothesis: Hy4: T; L Yig4
« Challenge: T; is not observed, we can only obtain an estimate T; = f(Y;.) by T|
* Much more false positives compared to clustering as pseudotime estimation
(estimate an ordering of the cells) is always much noisier

* We would like to account for the uncertainty in T;
* Unsupervised learning: T; is never observed, if T; is terribly estimated, then we will

never be able to test Hy,

* Aclear statement of a reasonable Hy, or requirement of nice property of T; seems
necessary



data thinning (Neufeld et. al., Biostatistics 2024)

ind.

X§§-'“‘i“ | {Xz'j = Xij} ~ " Binomial (Xz'j,é), Xtest — Y _ Xxtrain

Perform trajectory inference and estimate pseudotime on the training data and perform
differential testing on the test data
Assume the model

Xij e Poisson(;Ai;), log (Asij) = Poj + B1jLi, Pij, Li € R,

Pros:
e allow any trajectory inference methods
 Computationally cost effective

* Cons:
* Assume that gene-gene dependence are completely captured by the pseudotime
* Estimated trajectory structure and cell ordering can be very different if reducing

the sequencing depth by a half



PseudotimeDE (Song and Li, Genome Biology 2021)

* |dea: subsampling can evaluate the variation of the estimated pseudotime
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PseudotimeDE (Song and Li, Genome Biology 2021)

Core steps:
e Sub-sample 80% of the cells each time to create multiple versions of the “data”
* Apply trajectory inference method both on the real data and on each subsampled data

* Totest Hy,: T; L Y;4, the method creates the null data by permuting the estimated
pseudotime on sub-sampled data

 Then the same GAM model is fitted on each gene and permuted pseudotime to create a null
distribution of the test statistics of Hy,

* The real test statistics is compared with the null distribution to compute a p-value

* Main con: the permuted pseudotime does not have dependence on gene g, while on real
data there is such dependence, thus the null distribution does not reflect the double dipping
bias

* Evaluation of the performance is hard as it is challenging to create data with known
trajectory structure, known DE genes and realistic gene-gene dependence
* The empirical performance of the method is surprisingly not bad on simulated data



Statistical inference and estimation after denoising

Estimation and inference after scRNA-seq denoising:
* |deally, denoising provides estimation of the underlying true gene expression

« However, the denoised data
* Introduce dependence between cells which are originally independently sampled
e Standard differential testing between two cell types can introduce false positives
because of cell-cell dependence

 May be over-smoothed so that the variability across cells are less than the true gene
expression variability and the gene-gene dependence may be higher
 Can lead to biased estimation in gene properties



Bias in estimating gene properties

Coefficient of variation (CV)
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Correcting for bias in estimating gene properties

(Agarwal et. al. Statistical Science 2020)
* Hierarchical model

: ind
Yoc|Xgc ~ Poisson(age Xgc) XgclAge TP F(Age, pgAgc)
Ag4c: structured part of the true gene expression (low rank, autoencoder output ...)
* f(X): gene property of interest, mean, variance, gene-gene correlation ...
. |: estim
Goal: estimate E[f(X)|Y, A

* General solution for any f(X):
* denoising method like SAVER or SAVER-X estimates posterior distribution (gamma
distribution) of X
* Repeatly sample from the posterior distribution, calculate f(X) and compute the mean

* Analytical solution for special f(X):
* Variance of a single gene  E[Vy(X) |7, A]

1TE. N c
~ [Z(ch — X+ vgc]
p=] =]



False positives in differential gene testing

* Severe problem first discussed in Andrews and Hemberg, F1000Research 2018
* Finding a solution is really challenging
False discovery rate (FDR)
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