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Outline

• scRNA-seq data integration and batch correction
• Three types of integration for single-cell multi-omics data

• Factor model-based methods
• Linear models
• Variational autoencoders

• Cell-similarity based methods

• Comparison between different methods



What is data integration/alignment?
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• Data integration may 
serve as the first step 
before any down-stream 
analyses
•  Double dipping: 

cells are not longer 
independent 
anymore after 
integration

• Observations are no 
longer counts, or 
only obtain low-
dimensional 
features



Three types of data integration for single-cell multiomics data
[Argelaguet et. al., Nature Biotech 2021]
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• Same sets of features, different datasets
• Main challenge: batch effects



Three types of data integration for single-cell multiomics data
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• Same cell, different types of features (multimodal data)
• Combine different types of features to understand cell-cell similarity
• Missing modality in some datasets 



Three types of data integration for single-cell multiomics data
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• Different cells, different types of features 
• What is the basis for integration? 

• Extra information about feature connections
• Use subset of cells with overlapping features as “bridges”



Three types of data integration for single-cell multiomics data
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• Mosaic integration between the second and third types



Integration for scRNA-seq data = batch correction?
Un-alignment between datasets 
• Biological differences: 

• Different cell population (tissue, individual, species) 
• Different cell types

• Technical differences: 
• batch effects 
• different sequencing depth

• Jointly analyze of multiple datasets
• Remove batch effects
• Remove unwanted/not interesting biological differences

    ‘uninteresting’ differences between individuals, species
• Keep meaningful biological difference between datasets (such as new cell type or true 

differential expression of cell type marker genes between conditions)

• Challenge: “unknown” Confounding between batches and cell types
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Unsupervised Batch Effect Removal

• Confounding between batches and unknown cell types

• Batches can be confounded with other important biological signals
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Batch correction with linear model: Limma (Ritchie et. al. , NAR 2015)

• The overall gene expression matrix (mean matrix): 𝜇!×1"#

• Batch corrected data: 𝑋 − 𝑅$𝐷$
• Developed for bulk RNA-seq data where differential testing across conditions is the primary goal
• (𝐷%#, 𝐷$#) needs to be full rank. For scRNA-seq, conditions and batches can be perfectly confounded
• Batches can also be confounded with cell types, trajectories in scRNA-seq
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Figure from Ryu et. al. 
Mol Cells, 2023



Challenges for batch correction in scRNA-seq
• Batch effects may not be linear

• If Batches are confounded with hidden factors of the data (like clustering structure), then batch 
effects are not identifiable
• 𝑌!"##$∗&"'"$ = 𝑍𝑉( + 𝑋)*+!,𝛽 + error, 𝛽 is not identifiable if the latent factors 𝑈 and 𝑋)*+!, 

can be arbitrarily correlated

• One possible identifiability condition: within the same cell type, cells are biologically 
homogenous across batches
• If cell types are already known, what is the purpose of integration?

• Another possible identifiability condition (implicitly assumed in many similarity based 
methods): 𝑋)*+!,𝛽 is small compared to 𝑍𝑉(, similar cells in batch 2 to a cell in batch 1 keep 
the same with/without batches

• Current batch correction methods tend to overcorrect batches effects (Argelaguet et. al., Nature 
Biotech 2021).  Differential testing between conditions may tend to be conservative after 
correction 
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ZINB-WaVE (Risso et. al., Nature Comm 2018)
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• The batches are sample-level covariates
• Gene-level covariates can include gene features such as gene length and GC content
• 𝑊 is the batch adjusted latent representation of cells
• Implicitly assume that the latent factors and batches are uncorrelated

• They used an L2 penalization on 𝑊 in the loss function
• The algorithm does not force latent factors and batches to be uncorrelated

• Assume that the observed counts follow ZINB model



scVI (Lopez et. al. Nature Methods 2018) 
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• Use variational autoencoder
(next page)

• Main feature: add batch 
information as extra nodes in 
both the input and bottleneck 
layer

• Implicitly assumes that latent 
factors 𝑍 and 𝑋#$%&' are 
uncorrelated as 𝑋#$%&' is fixed 
and 𝑍 has prior 𝑍~𝑁(0, 𝐼)

• Under linear model
𝑌&())*∗,(-(* = 𝑈𝑉. + 𝑋#$%&'𝛽 + 𝐸

estimated 𝑍 and 𝑋#$%&' are 
uncorrelated

• Estimated 𝑍 can be correlated 
with 𝑋#$%&' in scVI because of 
using VAE



Details of scVI model
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Variational autoencoder
• Assume that the latent variables 𝑍~𝑁(0, 𝐼)
• Approximate the posterior of 𝑍 given input data

by Gaussian distribution
• Encoder: posterior mean and variance of 𝑍 as

non-linear functions of input data
• Decoder: non-linear mapping from 𝑍 to the observed data
• Generalization of linear probabilistic  factor model to nonlinear 

probabilistic factor models

• scVI assumes a ZINB model on the observed data
• Both posterior distributions of 𝑍 and mapping from 𝑍 to the 

observed data depend on the batches 

Final output of scVI
• Use latent factors for visualization and clustering
• Use output layer for denoising (imputation)



scGen (Lotfollahi et. al. Nature Methods, 2019)
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• Originally designed to perturbation prediction but can also be used for batch correction

• scGen also used VAE, not sure if batches are inputs in the VAE as in scVI

• Batch correction is done to each cell type separately
• Requires cell type information as input data (may not be applicable in practice)
• In the latent space, for each cell type, calculate 

• Add 𝛿 to the corresponding latent vectors so cells within the same cell type are mixed
• Get the corrected gene expression matrix
• Sounds like applying Limma on the latent space for each cell type separately

Figure from Ryu et. 
al. Mol Cells, 2023



scANVI (Xu et. al. Mol Syst Biol, 2021)

• Perform automatic cell type annotation by integrating cells 
with cell type labels and cells without cell type labels

• Other assumptions are the same as scVI
• More complicated encoders for representing posterior 

distribution of the latent space
• Cells without labels: posterior distribution of Z given 

observed data and batch
• Cells with labels: posterior distribution of Z given 

observed data, batch and cell type

• Specific algorithm and neural network design:
• Details not provided, claim following Kingma et. 

al., NeulPS 2014
• A guess of the neural network constructure based 

on (Kingma et. al., NeulPS 2014) model M2
• What if there are unseen cell types in the unlabeled data? 

• Common problem in automatic cell type annotation as 
discussed earlier 16



Some benchmarking results (Tran et. al. Genome Biology 2018)
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Identical cell 
types, different 
technologies

Non 
identical cell 
types



Similarity-based batch correction methods
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Common steps:
• Project the merged datasets onto a low-dimensional space
• Identify similar cells (pairs of cells) between batches
• Correction: correct batch effects so that cells pairs are together on the low-dimensional space

• Batch correction is only performed on low-dimensional space
• Previous factor-model-based methods provide batch corrected gene expressions



MNNcorrect / fast MNN (Hadhverdi L. et. al., Nature Biotech, 2018)

• Steps: 
a) Measure cell similarity (Euclidean distance after 

normalization)

b) Find paired cells from two batches
• Identify KNN of each cell in batch 1 (2) in the other 

batch 2 (1) 
• Keep the pair of cells if the they are both KNN of 

each other

c) Batch correction:
• Compute pair-specific differences
• Use Gaussian kernel smoothing (weights) to 

compute the correction vector of each cell 
• The cell-specific correction vector is a 

weighted average of the pair-specific 
correction vectors

• Critical assumption
• Batch effects are relatively small
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Use Canonical correlation analysis (CCA) for scRNA-seq 
alignment
• CCA: originally used to find best combination of two sets of variables that have largest correlation

• For scRNA-seq, treat each cell as a “feature”, each gene as an “observation”
• Compute weighted combination of cells within each batch so that the combined cells have 

best correlation between the two batches
• Essentially solving SVD of 𝑌-(𝑌.

• Left and right eigenvectors of 𝑌-(𝑌. are estimates of 𝑊- and 𝑊.
• Treat CCA as a dimension reduction step that minimize the effect of batches
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Seurat CCA
• MultiCCA (v1) (Butler et. al. Nature Biotech 2018) further uses dynamic time wrapping to further 

align the CC vectors to remove remaining batch effects

• They later have developed multiCCA (v2) which is hybrid between multiCCA (v1) and MNNcorrect
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MultiCCA v2 (Stuart et. al. Cell, 2019)

• Steps
• CCA as in MultiCCA V1 to project both 

datasets into lower dimensions 
• PCA may amplify differences between 

two datasets and focus on variation directions
that are unique to one dataset

• Identify anchor cells using MNN
• Give each cell an anchor score

• Check MNN also in the original space to improve robustness
• Anchors scoring: find consistency of KNNs within each dataset and with other datasets
• Anchor weighting 𝑾: a matrix of anchors by cells in 𝑌&

• Weights depend on cell-cell distance, only use k nearest anchors
• Alignment:  -𝑌& = 𝑌& + 𝑌',) − 𝑌&,* 𝑊
• Multiple datasets: align sequentially

• Label transfer and feature imputation
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Scanorama (Hie et. al. , Nature Biotech 2019)

Main advantage: computationally fast MNN
• Find KNN of a cell in one dataset from all other datasets

• To reduce computational cost in finding KNN by approximation with random projection trees 
to make computational cost less than 𝑂(𝑘𝑛)

• Anchor cells: keep a pair of cells if they are KNN to each other
• Computational cost reduce from 𝑂(𝑘.𝑛-𝑛.) to 𝑂(𝑘	min(𝑛-, 𝑛.)) 

• Batch correction from anchors using Gaussian kernel smoothing weights same as 
MNNcorrect/fastMNN

• Scanorama performs better than MNNcorrect/fastMNN in benchmarking studies
• Only methodological difference between Scanorama and MNNcorrect/fastMNN seems to be the 

dimension reduction first step before finding KNN
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Harmony (Korsunsky et. al. Nature Methods, 2019)

Steps
• PCA
• Iteratively perform

• Soft k-means clustering
• Penalize clusters that has less batch diversity



Harmony (Korsunsky et. al. Nature Methods, 2019)
Steps
• PCA
• Iteratively perform

• Soft k-means clustering
• Penalize clusters that has less batch diversity
• Goal: make cells of the same cell type in each cluster

• Mixture of experts model for correction
• Compute cluster-specific batch correction by linear regression

• Assume that the mean of each cell within each cluster linearly depend on the batch information
• Move cells in each cluster by subtracting the batch and cluster specific mean effect



Comparison of computational costs



Summary

• Factor-model-based methods and cell-similarity based methods seem to be based on two 
different sets of assumptions on the batch effects
• Factor-model-based: batch information and latent factors are nearly orthogonal to each 

other
• Cell-similarity based: batch effect is very small compared to biological signals
• The two assumptions seem quite different -> what is the consequence on performance?

• Factor-model-based methods can provide batch corrected gene expression matrix
• May introduce false positives in down-stream differential testing 

• Performance: Without using additional cell type information, cell-similarity based methods 
perform slightly better but the two strategies seem comparable



Benchmarking results (Tran et. al. Genome Biology 2020)



Benchmarking results (Luecken et. al. Nature Methods 2022)
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