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Outline

* Reference mapping and automatic cell type label transfer
(annotation)
* Collection of large-scale atlas data
* Autoencoder-based methods

* Cell-cell similarity based methods

* More complicated models using transformer



External data: Human Cell Atlas (HCA)

* Global collaboration to map all cells in a human body
e The HCA community collect multi-omics single-cell sequencing data
e Data publicly available for download
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External data for mouse

 Mouse Cell Atlas (Han et. al., Cell 2018):
~ 500,000 cells, 40 tissues

PO Tabula muris
* Data from Tabula Muris Consoritium: Aml_aml_/q8ml T 2tml 24l 3oml
multi-tissue atlas transcriptomics data | L, l l
n=4 n=4 n=3

along mouse lifespan to understand aging
* (The Tabula Muris Consortium Nature
2018): 100K cells, 20 organs and

Unclassified dataset (new reference)

tissues . * 5
 (The Tabula Muris Consortium Nature Experl
2020):

350K cells, 6 age groups (1 month —
30 months), 23 tissues and organs

Existing reference —
(Tabula Muris) Automatically classified dataset

* Various large-scale data for different
mouse tissues (such as the brain)



Many other atlas-scale data

* scRNA-seq atlas data across species including animals, plants and fungi

O' Single Cell Expression Atlas

w®  Single cell gene expression across species

& Browse experiments &, Download Release notes ® Support

Search across 21 species, 355 studies, 10,505,726 cells

 Human protein atlas
* Protein coding genes form 31 human tissues



What can large-scale atlas data offer?

Large number of cells characterizing the expression patterns of genes in various cell populations
Expert curated annotations of the cells
* Aiming to provide information on every cell type
Understand gene expression and cell population variability across individuals / patients
Data on mouse cells may provide a better understanding of human cells

Goals:
* Create a reference atlas map that have corrected batch effects across individual datasets within
the atlas data
 Reference mapping: transfer learning for analyzing new target data (small sample size, collected
under a new condition)
e Better visualization and clustering, especially for the rare cell types
* Denoising of the target data
 Automatic cell type annotation
 Comparison between the new target data and the reference
* New cell type
» Differentially expressed genes between target and reference within the same cell type



SAVER-X (Wang et. al. Nature Methods 2019)

* SAVER-X: transfer learning from reference data to help denmsmg
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e Main idea: use reference data as better initialization autoencoder

* No adjustment of batch effect
* Reference data should have similar tissue / cell types
* Only focus on the target data (no comparison between reference and target)
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SAVER-X (Wang et. al. Nature Methods 2019)

Original SAVER-X (no pretrain) SAVER-X (HCA)

S
5 . 7
%‘, 0.608 Q 0.698

Bcells Monocytes CD34* NKcells
T cells
Naive
cytotoxic ~ Cytotoxic ~ CD4* memory

‘ CD4+‘

Regulatory  naive T

T cells no reg

b No pretrain All T-cell types
- seL 8o, o ®
23 . m“*, .
ST AT AR, A ST ) '?‘* }:'@:- ,
.'5 ::"‘. s - . -".'..:':.“ &~ kA o Y o ;* T“\ AR
e® ofge. e o™ . 2% ez, * 9
oA -‘:;éiéy' s ”Y
CARSE | | sTERCRSA LT
.“’:. .{':*.?232 < '-s""';"- 0.116 0.731

H)’ }‘i e "1,\':"w:» |M!.4 ol W"w f

HIHI I}‘ H\)I ‘HHHIM ’N hll\HIH ‘III} ” ‘H ‘II IIIIP" UIII‘IIIIlli {H “ HIH\ Il \ W ’“I”II
il \IH [ | I II]H H I Il IIMI Il ‘I 1 MIHI |
| lMI \ |“I||I}II‘|MIII¥ ‘I\ I | |“ |" }"‘I IW‘I#FM}M

l‘ \‘ I l
| ‘| H ||‘ "\HH |}I”Ill{llll\llll | “ ”H||\HH‘\” I|'|\||I H

I}III

|I il

il

“N

o

il
\H\ WHII\{H

.22 "f,,
“;\23 o
TR
wE FRIRAN
B ahon
b RS o 2
i \z
s’ < 0.693
& 1
| l FOXP3 | 0
IL2RA |
DUSP4 | -1
il I\IIHH RGS1 : -2

Th Ty ‘W!FC""‘ J

I

\III}H\ Il

\ I\ \ SAT
ﬂ GZMK




SAVER-X (Wang et. al. Nature Methods 2019)

* Bayesian model makes final denoised value a weighted average between autoencoder

output and observed data
* Help removing biased from reference data

* Example: mouse to human transfer
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scArches (Lotfollahi et. al., Nature Biotech 2022)

e Uses asimilar VAE framework but adjust for batch effects
* Focus on low-dimensional representation of the cells
* Can also obtain “reference-corrected” gene expression matrix

* Mainidea
* Pretrain reference data using a similar framework as scVI

 Add reference labels (such as batches, datasets, conditions, tissues, species ...) both in
input layer and bottleneck layer

Can pre-train the reference model with other deep learning framework like scANVI
Can also add an extra MMD penalty in the loss function to further encourage that data
from different batches are mixed in Z [reduce correlation between Z and batches]

Public reference datasets

Study 1
Study 2 Pre-training of
ﬁém_ﬂh reference models
Study N @ T mmmmmmsssssssees )

eference labels
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scArches (Lotfollahi et. al., Nature Biotech 2022)

e MMD penalty between two datasets X and X’

NN
havp (X, X') = =5 >0 > k(@n, Tm)
0 n=1m=1
X N N ) No Ny
+=7 20 2 k@, om) — 55 22 2 k(@n, om).
I m=1m=1 0-H1 n=1m=0

* k(x,y): Gaussian kernel similarity between two points

e Larger MMD -> more separation between the two datasets

« MMD loss can lead to over-correction if different datasets are biologically very different

* The authors suggest putting the MMD penalty on the first decoder layer instead of the
bottleneck to further reduce correlation between Z and S

Public reference datasets

Study 1
Study 2 Pre-training of
ﬁ-ﬁ-]mih reference models
Study N @ T mmmmsmsmeesssseees )

eference labels
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scArches (Lotfollahi et. al., Nature Biotech 2022)

* Mainidea
* Pretrain reference data using a similar framework as scVI
 Map target data onto reference data by minimal fine-tuning the pre-trained model

* Add extra nodes in input and bottleneck layer to indicate new dataset (and also
new batches)

* Only train weights from the new nodes
* Their empirical experiments suggest that keeping all weights related to reference
data frozen performs the best in mixing reference data with query (target) data

Query data
Study N + 1 Adaptor
N+2 +
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surgery
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scArches (Lotfollahi et. al., Nature Biotech 2022)
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Reference mapping in Seurat V4 (Hao et. al. Cell, 2021)

* Can integrate multi-modal data (we only describe the version for scRNA-seq data here)
* Low-dimensional projection using sPCA
* Project the reference data by Z = UTX , and then project the query data using the same U
* (Can not use CCA any more
e Howtofind U?
* Construct a cell-cell similarity matrix L (for example from KNN)
* Find U that maximized the Hilbert-Schmidt Independence Criterion (HSIC):

HSIC ((UTX)'UTX, L)

= st (XTUUTXHLH)

where H is the centering matrix Hij=1- n'ee’.
e Thisis equivalent to

argmax tr(UTXHLHX"U)
U
subject to UTU =1

* Solution: U is the eigenvector of matrix XHLHXT (PCA: eigenvector of XHHXT = XHXT)
* |In Seurat V5 they will use Laplacian eigen decomposition (will discuss in later lectures) 14



Reference mapping in Seurat V4 (Hao et. al. Cell, 2021)

e Can integrate multi-modal data (we only describe the version for scRNA-seq data here)
* Low-dimensional projection using sPCA
* Problem with CCA: can not keep the reference embeddings fixed

* Find anchor cell pairs between the reference data and the query data
* Project the query data onto the reference using the kernel weighting of anchor differences
vectors as in Seurat CCA V2 (Seurat V3)
* Define the weight matrix between all query cells and anchor cells as matrix W

* Cell type label transfer:
* Assign the same cell type label to anchor cells in the query data by the cell type labels of
their pairs in the reference dataset
* Prediction score of the transferred labels:

P=LWwT
L are the labels of reference anchors

* Should be easy to assign an anchor similarity score to each cell to identify cells that can
not be assigned well (unknown new cell types) [Similar idea implemented in scArches]



Symphony (Kang et. al., Nature Communications 2021)

Cell-cell similarity based reference mapping for joint visualization and label transfer

Main Steps

* Integrate reference data from different batches using Harmony

Reference Datasets

Harmonized
Reference Embedding

|
EEAA
PCA &
EANNA Harmony dataset
A AA integration
HAR

» B
b &

h
b

b

Symphony
Compression

>
Compress mixture
model components

Symphony Minimal
Reference Elements

Cluster-specific
linear models for PCs

* Project the query data on the PC space of reference data by linear rotation

Zq = UGy

* Soft assign cells to reference clusters

* Move query cells within each cluster by subtracting the batch and cluster specific mean

effect
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Symphony (Kang et. al., Nature Communications 2021)

e Cell-cell similarity based reference mapping for joint visualization and label transfer

* Main Steps
* Integrate reference data from different batches using Harmony

* Project the query data on the PC space of reference data by linear rotation
_ 11T
» Soft assign cells to reference clusters

* Assumes that there is no new unknown cell type
 Move query cells within each cluster by subtracting the batch and cluster specific mean
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Approximate location of query cells
in harmonized reference embedding



New deep learning-based methods using transformer

Instead of using autoencoder, researcher
have also tried using more complicated
deep learning models like transformer
Youtube video from StatQuest for an
relatively easy introduction of
transformer:
https://www.youtube.com/watch?v=zxQ

TK8quyY

Compared to autoencoder
* Provides embedding of each gene
* Explicitly make use of gene-gene
similarity by self-attention
* Multi-head attention sounds like
bagging?
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https://www.youtube.com/watch?v=zxQyTK8quyY
https://www.youtube.com/watch?v=zxQyTK8quyY

Geneformer (Theodoris et. al., Nature 2023)

* Pre-trained model is based on 40M human cells from 561 datasets using droplet-based
platforms
* Labels of a cell include: organ, platform, cell type (if provided by the original order)

Pretraining
* |Instead of using the original gene expression, use the ranking of genes (after scaling)
within a cell type as the input (similar to quantile normalization)
* That creates a position of a gene (word) within a cell (sentence)

C Rank value encoding .
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Gene H 5 5 i
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o o} o & © 9 N
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ene 8 S \ Contextual
Eere L — — predictions

x6

* The self-attention layers create embeddings of each gene
* Cell embedding can be obtained by weighted average of gene embeddings
* Unsupervised learning (no decoder units)

* Objective function: prediction accuracy of randomly masked genes



Geneformer (Theodoris et. al., Nature 2023)

* Pre-trained model is based on 40M human cells from 561 datasets using droplet-based
platforms

* Labels of a cell include: organ, platform, cell type (if provided by the original order)

Pretraining
Self-supervised large-scale pretraining Fine-tuning with limited task-specific data
. . Limited task-specific
i F|ne'tun|ng data for task 1
» Specific tasks: gene classification, l Fine-tuning
cell classification Fine-tuning
. o[ Model for layer for
° -
Add d fl na l taSk SpeCIfIC Genecorpus-30M fine-tuning task 1 Task 1
- task 1 predictions
transformer layer Sef-supervised Copy
e, o . . \ 3 traini . ight
* Initialize the model with § pretraining | Pretrained | oI9S
. ) & X Geneformer
pretrained weights Yo &= Fine-tuning
‘ N Model for layer for
_ fine-tuning task N Task N
Democratize task N predictions
fundamental
understanding of
network dynamics T Fine-tuning
to vast array of
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