STAT 35510 Lecture 9

Spring, 2024 Jingshu Wang

Outline

- Reference mapping and automatic cell type label transfer (annotation)
 - Collection of large-scale atlas data
 - Autoencoder-based methods
 - Cell-cell similarity based methods
 - More complicated models using transformer

External data: Human Cell Atlas (HCA)

- Global collaboration to map all cells in a human body
- The HCA community collect multi-omics single-cell sequencing data
- Data publicly available for download

HCA Biological Network Atlases

External data for mouse

- Mouse Cell Atlas (Han et. al., Cell 2018):
 ~ 500,000 cells, 40 tissues
- Data from Tabula Muris Consoritium: multi-tissue atlas transcriptomics data along mouse lifespan to understand aging
 - (The Tabula Muris Consortium Nature 2018): 100K cells, 20 organs and tissues
 - (The Tabula Muris Consortium Nature 2020):

350K cells, 6 age groups (1 month – 30 months), 23 tissues and organs

• Various large-scale data for different mouse tissues (such as the brain)

Many other atlas-scale data

• scRNA-seq atlas data across species including animals, plants and fungi

Search across 21 species, 355 studies, 10,505,726 cells

- Human protein atlas
 - Protein coding genes form 31 human tissues

What can large-scale atlas data offer?

- Large number of cells characterizing the expression patterns of genes in various cell populations
- Expert curated annotations of the cells
 - Aiming to provide information on every cell type
- Understand gene expression and cell population variability across individuals / patients
- Data on mouse cells may provide a better understanding of human cells

Goals:

- Create a reference atlas map that have corrected batch effects across individual datasets within the atlas data
- Reference mapping: transfer learning for analyzing new target data (small sample size, collected under a new condition)
 - Better visualization and clustering, especially for the rare cell types
 - Denoising of the target data
 - Automatic cell type annotation
- Comparison between the new target data and the reference
 - New cell type
 - Differentially expressed genes between target and reference within the same cell type

SAVER-X (Wang et. al. Nature Methods 2019)

• SAVER-X: transfer learning from reference data to help denoising

- Main idea: use reference data as better initialization autoencoder
 - No adjustment of batch effect
 - Reference data should have similar tissue / cell types
 - Only focus on the target data (no comparison between reference and target) Weight Initialization using \hat{f} and \hat{g}

output

Δ

decoder

SAVER-X (Wang et. al. Nature Methods 2019)

SAVER-X (Wang et. al. Nature Methods 2019)

- Bayesian model makes final denoised value a weighted average between autoencoder output and observed data
 - Help removing biased from reference data
- Example: mouse to human transfer

With the

Bayesian

shrinkage

- Uses a similar VAE framework but adjust for batch effects
- Focus on low-dimensional representation of the cells
 - Can also obtain "reference-corrected" gene expression matrix
- Main idea
 - Pretrain reference data using a similar framework as scVI
 - Add reference labels (such as batches, datasets, conditions, tissues, species ...) both in input layer and bottleneck layer
 - Can pre-train the reference model with other deep learning framework like scANVI
 - Can also add an extra MMD penalty in the loss function to further encourage that data from different batches are mixed in Z [reduce correlation between Z and batches]

10

• MMD penalty between two datasets X and X'

$$egin{aligned} l_{ ext{MMD}}(X,X') &= rac{1}{N_0^2}\sum\limits_{n=1}^{N_0}\sum\limits_{m=1}^{N_0}k(x_n,x_m) \ &+rac{1}{N_1^2}\sum\limits_{n=1}^{N_1}\sum\limits_{m=1}^{N_1}k(x'_n,x'_m) - rac{2}{N_0N_1}\sum\limits_{n=1}^{N_0}\sum\limits_{m=0}^{N_1}k(x_n,x'_m). \end{aligned}$$

- k(x, y): Gaussian kernel similarity between two points
- Larger MMD -> more separation between the two datasets
- MMD loss can lead to over-correction if different datasets are biologically very different
- The authors suggest putting the MMD penalty on the first decoder layer instead of the bottleneck to further reduce correlation between Z and S

- Main idea
 - Pretrain reference data using a similar framework as scVI
 - Map target data onto reference data by minimal fine-tuning the pre-trained model
 - Add extra nodes in input and bottleneck layer to indicate new dataset (and also new batches)
 - Only train weights from the new nodes
 - Their empirical experiments suggest that keeping all weights related to reference data frozen performs the best in mixing reference data with query (target) data

Reference mapping in Seurat V4 (Hao et. al. Cell, 2021)

- Can integrate multi-modal data (we only describe the version for scRNA-seq data here)
- Low-dimensional projection using sPCA
 - Project the reference data by $Z = U^T X$, and then project the query data using the same U
 - Can not use CCA any more
 - How to find U?
 - Construct a cell-cell similarity matrix *L* (for example from KNN)
 - Find U that maximized the Hilbert-Schmidt Independence Criterion (HSIC):

$$HSIC\left(\left(U^{T}X\right)^{T}U^{T}X,L\right)$$
$$=\frac{1}{(n-1)^{2}}tr\left(X^{T}UU^{T}XHLH\right)$$

where H is the centering matrix $H_{ij} = I - n^{-1} e e^{T}$.

• This is equivalent to

```
\underset{U}{\operatorname{argmax}} \quad tr(U^{T}XHLHX^{T}U)
subject to U^{T}U = I
```

- Solution: U is the eigenvector of matrix $XHLHX^T$ (PCA: eigenvector of $XHHX^T = XHX^T$)
- In Seurat V5 they will use Laplacian eigen decomposition (will discuss in later lectures)

Reference mapping in Seurat V4 (Hao et. al. Cell, 2021)

- Can integrate multi-modal data (we only describe the version for scRNA-seq data here)
- Low-dimensional projection using sPCA
- Problem with CCA: can not keep the reference embeddings fixed
- Find anchor cell pairs between the reference data and the query data
- Project the query data onto the reference using the kernel weighting of anchor differences vectors as in Seurat CCA V2 (Seurat V3)
 - Define the weight matrix between all query cells and anchor cells as matrix W
- Cell type label transfer:
 - Assign the same cell type label to anchor cells in the query data by the cell type labels of their pairs in the reference dataset
 - Prediction score of the transferred labels:

$$P_l = LW^T$$

L are the labels of reference anchors

• Should be easy to assign an anchor similarity score to each cell to identify cells that can not be assigned well (unknown new cell types) [Similar idea implemented in scArches]

Symphony (Kang et. al., Nature Communications 2021)

- Cell-cell similarity based reference mapping for joint visualization and label transfer
- Main Steps

• Project the query data on the PC space of reference data by linear rotation

$$\mathbf{Z}_{\mathbf{q}} = \mathbf{U}^{\mathbf{T}} \mathbf{G}_{\mathbf{qs}}$$

- Soft assign cells to reference clusters
- Move query cells within each cluster by subtracting the batch and cluster specific mean effect

Symphony (Kang et. al., Nature Communications 2021)

- Cell-cell similarity based reference mapping for joint visualization and label transfer
- Main Steps
 - Integrate reference data from different batches using Harmony
 - Project the query data on the PC space of reference data by linear rotation

$$\mathbf{Z}_{\mathbf{q}} = \mathbf{U}^{\mathrm{T}}\mathbf{G}_{\mathbf{qs}}$$

- Soft assign cells to reference clusters
 - Assumes that there is no new unknown cell type
- Move query cells within each cluster by subtracting the batch and cluster specific mean effect v
 Query Embedding v

New deep learning-based methods using transformer

- Instead of using autoencoder, researcher have also tried using more complicated deep learning models like transformer
- Youtube video from StatQuest for an relatively easy introduction of transformer:

https://www.youtube.com/watch?v=zxQ TK8quyY

- Compared to autoencoder
 - Provides embedding of each gene
 - Explicitly make use of gene-gene similarity by self-attention
 - Multi-head attention sounds like bagging?

Geneformer (Theodoris et. al., Nature 2023)

- Pre-trained model is based on 40M human cells from 561 datasets using droplet-based platforms
- Labels of a cell include: organ, platform, cell type (if provided by the original order)

Pretraining

- Instead of using the original gene expression, use the ranking of genes (after scaling) within a cell type as the input (similar to quantile normalization)
 - That creates a position of a gene (word) within a cell (sentence)

- The self-attention layers create embeddings of each gene
- Cell embedding can be obtained by weighted average of gene embeddings
- Unsupervised learning (no decoder units)
 - Objective function: prediction accuracy of randomly masked genes

Geneformer (Theodoris et. al., Nature 2023)

- Pre-trained model is based on 40M human cells from 561 datasets using droplet-based platforms
- Labels of a cell include: organ, platform, cell type (if provided by the original order)

Pretraining

- Fine-tuning
 - Specific tasks: gene classification, cell classification
 - Add a final task-specific transformer layer
 - Initialize the model with pretrained weights

Related papers

- Han, X., Wang, R., Zhou, Y., Fei, L., Sun, H., Lai, S., ... & Guo, G. (2018). Mapping the mouse cell atlas by microwell-seq. *Cell*, 172(5), 1091-1107.
- Schaum, N., Karkanias, J., Neff, N. F., May, A. P., Quake, S. R., Wyss-Coray, T., ... & Weissman, I. L. (2018). Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris: The Tabula Muris Consortium. Nature, 562(7727), 367.
- "A single-cell transcriptomic atlas characterizes ageing tissues in the mouse." Nature 583, no. 7817 (2020): 590-595.
- Wang, J., Agarwal, D., Huang, M., Hu, G., Zhou, Z., Ye, C., & Zhang, N. R. (2019). Data denoising with transfer learning in single-cell transcriptomics. Nature methods, 16(9), 875-878.
- Lotfollahi, M., Naghipourfar, M., Luecken, M. D., Khajavi, M., Büttner, M., Wagenstetter, M., ... & Theis, F. J. (2022). Mapping single-cell data to reference atlases by transfer learning. Nature biotechnology, 40(1), 121-130.
- Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W. M., Zheng, S., Butler, A., ... & Satija, R. (2021). Integrated analysis of multimodal single-cell data. Cell, 184(13), 3573-3587.
- Kang, J. B., Nathan, A., Weinand, K., Zhang, F., Millard, N., Rumker, L., ... & Raychaudhuri, S. (2021). Efficient and precise single-cell reference atlas mapping with Symphony. Nature communications, 12(1), 5890.
- Theodoris, C. V., Xiao, L., Chopra, A., Chaffin, M. D., Al Sayed, Z. R., Hill, M. C., ... & Ellinor, P. T. (2023). Transfer learning enables predictions in network biology. Nature, 618(7965), 616-624.