
Lecture 10 
Reference mapping and 

transfer learning



Outline

• Reference mapping and automatic cell type label transfer 
(annotation)
• Collection of large-scale atlas data

• Autoencoder-based methods

• Cell-cell similarity-based methods

• More complicated deep learning framework using language models
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External data: Human Cell Atlas (HCA)
• Global collaboration to map all cells in a human body
• The HCA community collect multi-omics single-cell sequencing data
• Data publicly available for download
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External data for mouse
• Mouse Cell Atlas (Han et. al., Cell 2018): 

~ 500,000 cells, 40 tissues

• Data from Tabula Muris Consoritium: 
multi-tissue atlas transcriptomics data 
along mouse lifespan to understand aging
• (The Tabula Muris Consortium Nature 

2018): 100K cells, 20 organs and 
tissues

• (The Tabula Muris Consortium Nature 
2020): 
350K cells, 6 age groups (1 month – 
30 months), 23 tissues and organs

• Various large-scale data for different 
mouse tissues (such as the brain)
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Many other atlas-scale data

• scRNA-seq atlas data across species including animals, plants and fungi

• Human protein atlas
• Protein coding genes form 31 human tissues
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What can large-scale atlas data offer?

• Large number of cells characterizing the expression patterns of genes in various cell populations
• Expert curated annotations of the cells

• Aiming to provide information on every cell type
• Understand gene expression and cell population variability across individuals / patients
• Data on mouse cells may provide a better understanding of human cells  

Goals:
• Create a reference atlas map that have corrected batch effects across individual datasets within 

the atlas data
• Reference mapping: transfer learning for analyzing new target data (small sample size, collected 

under a new condition)
• Better visualization and clustering, especially for the rare cell types
• Denoising of the target data
• Automatic cell type annotation

• Comparison between the new target data and the reference
• New cell type
• Differentially expressed genes between target and reference within the same cell type
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SAVER-X (Wang et. al. Nature Methods 2019) 

• SAVER-X: transfer learning from reference data to help denoising

• Main idea: use reference data as better initialization autoencoder
• No adjustment of batch effect

• Reference data should have similar tissue / cell types
• Only focus on the target data (no comparison between reference and target)

better-quality / large-scale public data sets

target data setPrior information of 𝑓 and 𝑔

Weight Initialization using መ𝑓 and ො𝑔

Prior information: መ𝑓 and ො𝑔

Pre-training
𝜦 𝜦𝑼

𝑔𝑓
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SAVER-X (Wang et. al. Nature Methods 2019) 
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SAVER-X (Wang et. al. Nature Methods 2019) 

• Bayesian model makes final denoised value a weighted average between autoencoder 
output and observed data
• Help removing biased from reference data

• Example: mouse to human transfer

Log(FC) [Original data]

With the 
Bayesian 
shrinkage

Just use the 
autoencoder 
output

Log(FC) [Original data]
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scArches (Lotfollahi et. al., Nature Biotech 2022)

• Uses a similar VAE framework but adjust for batch effects
• Focus on low-dimensional representation of the cells

• Can also obtain “reference-corrected” gene expression matrix

• Main idea
• Pretrain reference data using a similar framework as scVI

• Add reference labels (such as batches, datasets, conditions, tissues, species …) both in 
input layer and bottleneck layer

• Can pre-train the reference model with other deep learning framework like scANVI
• Can also add an extra MMD penalty in the loss function to further encourage that data 

from different batches are mixed in 𝑍 [reduce correlation between 𝑍 and batches]
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scArches (Lotfollahi et. al., Nature Biotech 2022)

• MMD penalty between two datasets 𝑋 and 𝑋’

• 𝑘(𝑥, 𝑦): Gaussian kernel similarity between two points
• Larger MMD -> more separation between the two datasets
• MMD loss can lead to over-correction if different datasets are biologically very different
• The authors suggest putting the MMD penalty on the first decoder layer instead of the 

bottleneck to further reduce correlation between 𝑍 and 𝑆
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scArches (Lotfollahi et. al., Nature Biotech 2022)

• Main idea
• Pretrain reference data using a similar framework as scVI
• Map target data onto reference data by minimal fine-tuning the pre-trained model

• Add extra nodes in input and bottleneck layer to indicate new dataset (and also 
new batches)

• Only train weights from the new nodes
• Their empirical experiments suggest that keeping all weights related to reference 

data frozen performs the best in mixing reference data with query (target) data
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scArches (Lotfollahi et. al., Nature Biotech 2022)
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SCimilarity (Heimberg et. al., Nature 2024)

• Goal
• Generate embedding of reference cells that are batch-corrected (invariant to different conditions, 

data sources, platforms)
• Train on a diverse enough assemble of datasets
• All the training cells are already annotated 
• Aim to find cell embeddings that mix cells within the same cell type but from different sources

• For a new query cell, automatically correct for batch effects without fine-tuning
• Possible if the training cells are diverse enough
• Automatically annotate the new query cell by comparing its similarity with annotated training 

cells using the embeddings

• Approach
• FaceNet model (Schroff et. al., 2015)

• Find embedding of faces that are 
batch invariant (Illumination and 
pose invariance for faces)
• 𝑁: number of triplets
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Scale and diversity of their 
reference and training data
• 7.8 millions of cells are 

annotated
• Used as training and 

test to get a model 
for embedding

• 15.5 millions of additional 
unannotated cells
• Annotated these cells 

based on the training 
cells?

• Serve as additional 
reference data for 
future queries
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• Triplet sampling
• Sampled 50 million most informative cell triplets
• Require anchor and positive cells in each triplet are from two different studies

• Loss function: weighted average of the triplet loss and reconstruction loss 

SCimilarity (Heimberg et. al., Nature 2024)
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SCimilarity (Heimberg et. al., Nature 2024)

Comparison with other approaches (still has batch effects due to no fine-tuning?)
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SCimilarity (Heimberg et. al., Nature 2024)

Comparison with other foundation models using transformers
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Reference mapping in Seurat V4 (Hao et. al. Cell, 2021)

• Can integrate multi-modal data (we only describe the version for scRNA-seq data here)
• Low-dimensional projection using sPCA

• Project the reference data by 𝑍 = 𝑈𝑇𝑋 , and then project the query data using the same 𝑈
• Can not use CCA any more

• How to find 𝑈?
• Construct a cell-cell similarity matrix 𝐿 (for example from KNN)
• Find U that maximized the Hilbert-Schmidt Independence Criterion (HSIC):

where H is the centering matrix 
• This is equivalent to 

• Solution: U is the eigenvector of matrix 𝑋𝐻𝐿𝐻𝑋𝑇 (PCA: eigenvector of 𝑋𝐻𝐻𝑋𝑇 = 𝑋𝐻𝑋𝑇)
• In Seurat V5 they will use Laplacian eigen decomposition (will discuss in later lectures)
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Reference mapping in Seurat V4 (Hao et. al. Cell, 2021)

• Can integrate multi-modal data (we only describe the version for scRNA-seq data here)
• Low-dimensional projection using sPCA
• Problem with CCA: can not keep the reference embeddings fixed

• Find anchor cell pairs between the reference data and the query data
• Project the query data onto the reference using the kernel weighting of anchor differences 

vectors as in Seurat CCA V2 (Seurat V3)
• Define the weight matrix between all query cells and anchor cells as matrix 𝑊

• Cell type label transfer: 
• Assign the same cell type label to anchor cells in the query data by the cell type labels of 

their pairs in the reference dataset
• Prediction score of the transferred labels:

𝐿 are the labels of reference anchors
• Should be easy to assign an anchor similarity score to each cell to identify cells that can 

not be assigned well (unknown new cell types) [Similar idea implemented in scArches]
 



• Cell-cell similarity-based reference mapping for joint visualization and label transfer
• Main Steps

• Integrate reference data from different batches using Harmony

• Project the query data on the PC space of reference data by linear rotation

• Soft assign cells to reference clusters (based on the reference centroids of the clusters in the 
harmonized space?)
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Symphony (Kang et. al., Nature Communications 2021)
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Symphony (Kang et. al., Nature Communications 2021)

• Cell-cell similarity-based reference mapping for joint visualization and label transfer

• Main Steps
• Integrate reference data from different batches using Harmony

• Project the query data on the PC space of reference data by linear rotation

• Soft assign cells to reference clusters
• Assumes that there is no new unknown cell type

• Move query cells within each cluster by subtracting the batch and cluster specific mean 
effect

Perform linear regression on 
query batches for query cells 
within each cluster
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New deep learning-based methods using transformer

• Instead of using autoencoder, researchers 
have also tried using more complicated 
deep learning models like transformer

• Transformer
• Originally used for translation
• A tutorial for transformer:

Jay Alammar, The Illustrated 
Transformer

• Using transformer instead of autoencoder 
for scRNA-seq
• Provides embedding of each gene
• Explicitly make use of gene-gene 

similarity by self-attention
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A bit more details about a self-attention layer

Parameters 
to train

Input embeddings

Output embeddings

Word-word similarity matrix

• Also have embedding for a position of a word
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Geneformer (Theodoris et. al., Nature 2023)

• Pre-trained model is based on 29.9M human cells from 561 datasets using droplet-based 
platforms 

• Labels of a cell include organ, platform, cell type (if provided by the original paper)

Pretraining
• Instead of using the original gene expression, use the ranking of genes (after scaling) 

within a cell as the input (similar to quantile normalization)
• That creates a position of a gene (word) within a cell (sentence)

• The self-attention layers create embeddings of each gene
• Cell embedding can be obtained by weighted average of gene embeddings
• Unsupervised learning (no decoder units)

• Objective function: prediction accuracy of randomly masked genes
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Geneformer (Theodoris et. al., Nature 2023)

• Pre-trained model is based on 40M human cells from 561 datasets using droplet-based 
platforms 

• Labels of a cell include: organ, platform, cell type (if provided by the original order)

Pretraining

• Fine-tuning
• Specific tasks: gene classification, 

cell classification
• Add a final task-specific 

transformer layer
• Initialize the model with 

pretrained weights
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