Lecture 10
Reference mapping and
transfer learning



Outline

» Reference mapping and automatic cell type label transfer
(annotation)
* Collection of large-scale atlas data
e Autoencoder-based methods

* Cell-cell similarity-based methods

* More complicated deep learning framework using language models



External data: Human Cell Atlas (HCA)

Global collaboration to map all cells in a human body
The HCA community collect multi-omics single-cell sequencing data
Data publicly available for download
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External data for mouse

 Mouse Cell Atlas (Han et. al., Cell 2018):
~ 500,000 cells, 40 tissues

PO Tabula muris
* Data from Tabula Muris Consoritium: T aml T gem] 2im] 2am )
multi-tissue atlas transcriptomics data | L, ’
n=4 n=4 n=3

along mouse lifespan to understand aging
* (The Tabula Muris Consortium Nature
2018): 100K cells, 20 organs and

Unclassified dataset (new reference)

tissues +
* (The Tabula Muris Consortium Nature Expert
2020):

350K cells, 6 age groups (1 month —
30 months), 23 tissues and organs

Existing reference . ——
(Tabula Muris) Automatically classified dataset

* Various large-scale data for different

mouse tissues (such as the brain) i | Transfer

cell-type labels
across species



Many other atlas-scale data

* scRNA-seq atlas data across species including animals, plants and fungi

0' Single Cell Expression Atlas
>

Single cell gene expression across species

& Browse experiments 4. Download Release notes @ Support

Search across 21 species, 355 studies, 10,505,726 cells

 Human protein atlas
* Protein coding genes form 31 human tissues



What can large-scale atlas data offer?

Large number of cells characterizing the expression patterns of genes in various cell populations
Expert curated annotations of the cells
* Aiming to provide information on every cell type
Understand gene expression and cell population variability across individuals / patients
Data on mouse cells may provide a better understanding of human cells

Goals:
* Create a reference atlas map that have corrected batch effects across individual datasets within
the atlas data

* Reference mapping: transfer learning for analyzing new target data (small sample size, collected
under a new condition)
* Better visualization and clustering, especially for the rare cell types
* Denoising of the target data
e Automatic cell type annotation
 Comparison between the new target data and the reference
* New cell type
» Differentially expressed genes between target and reference within the same cell type



SAVER-X (Wang et. al. Nature Methods 2019)

* SAVER-X: transfer learning from reference data to help denoising
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* Main idea: use reference data as better initialization autoencoder
* No adjustment of batch effect
* Reference data should have similar tissue / cell types
* Only focus on the target data (no comparison between reference and target)
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SAVER-X (Wang et. al. Nature Methods 2019)
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SAVER-X (Wang et. al. Nature Methods 2019)

Bayesian model makes final denoised value a weighted average between autoencoder

output and observed data
* Help removing biased from reference data

 Example: mouse to human transfer

a Human UMI SAVER-X pretrained

down-sampled SAVER-X no pretrain with mouse data
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scArches (Lotfollahi et. al., Nature Biotech 2022)

* Uses asimilar VAE framework but adjust for batch effects
* Focus on low-dimensional representation of the cells
e Can also obtain “reference-corrected” gene expression matrix

* Mainidea
* Pretrain reference data using a similar framework as scVI
» Add reference labels (such as batches, datasets, conditions, tissues, species ...) both in
input layer and bottleneck layer
e Can pre-train the reference model with other deep learning framework like scCANVI
* Can also add an extra MMD penalty in the loss function to further encourage that data
from different batches are mixed in Z [reduce correlation between Z and batches]

Public reference datasets

Study 1
Study 2 Pre-training of
iﬂ@.ﬁh reference models
Stu V N ---------------- >

10

eference labels



scArches (Lotfollahi et. al., Nature Biotech 2022)

e  MMD penalty between two datasets X and X’

L MM
oo (X, X)) = L 3% 3 ke, 2m)
0 n=1m=1
Nl N1 N{J Nl
_’_# Z Z k(x;tam!m) o ﬁ Z Z k(mnax;n)
I n=1m=1 n=1m=0

* k(x,y): Gaussian kernel similarity between two points
* Larger MMD -> more separation between the two datasets
e MMD loss can lead to over-correction if different datasets are biologically very different

* The authors suggest putting the MMD penalty on the first decoder layer instead of the
bottleneck to further reduce correlation between Z and §

Public reference datasets

Study 1
Study 2 Pre-training of
reference models
Stu \'i N ---------------- >

eference labels
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scArches (Lotfollahi et. al., Nature Biotech 2022)

* Mainidea
* Pretrain reference data using a similar framework as scVI
 Map target data onto reference data by minimal fine-tuning the pre-trained model
* Add extra nodes in input and bottleneck layer to indicate new dataset (and also
new batches)
e Only train weights from the new nodes
* Their empirical experiments suggest that keeping all weights related to reference
data frozen performs the best in mixing reference data with query (target) data

Architectural
surgery
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scArches (Lotfollahi et. al., Nature Biotech 2022)
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SCimilarity (Heimberg et. al., Nature 2024)

* Goal
* Generate embedding of reference cells that are batch-corrected (invariant to different conditions,
data sources, platforms)
* Train on a diverse enough assemble of datasets
e All the training cells are already annotated
* Aim to find cell embeddings that mix cells within the same cell type but from different sources
* For a new query cell, automatically correct for batch effects without fine-tuning
* Possible if the training cells are diverse enough

* Automatically annotate the new query cell by comparing its similarity with annotated training
cells using the embeddings

* Approach |
* FaceNet model (Schroff et. al., 2015) Anchor egative @
* Find embedding of faces that are ’i‘o
batch invariant (lllumination and
pose invariance for faces)

.@g.ative

Anchor .
Positive Positive

Figure 3. The Triplet Loss minimizes the distance between an an-

 N:number of triplets chor and a positive, both of which have the same identity, and
9 9 maximizes the distance between the anchor and a negative of a
>[I = F@DIE ~ 1£@D) = FEDIE+0] . Gifteront entiy
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Scale and diversity of their
reference and training data

7.8 millions of cells are

annotated

- 23.4 million cells
— 412 studies

— Pan tissue and disease

— Perturbations

Used as training and
test to get a model
for embedding

15.5 millions of additional
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SCimilarity (Heimberg et. al., Nature 2024)

* Triplet sampling

* Sampled 50 million most informative cell triplets

* Require anchor and positive cells in each triplet are from two different studies
* Loss function: weighted average of the triplet loss and reconstruction loss
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SCimilarity (Heimberg et. al., Nature 2024)

Comparison with other approaches (still has batch effects due to no fine-tuning?)
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SCimilarity (Heimberg et. al., Nature 2024)

Comparison with other foundation models using transformers

scFoundation
p=0.54

UMAP 1

Ground truth SCimilarity scGPT
p=0.77 p=0.59
NI * ‘ - I I p
% : 'm =
=
-
UMAP 1 UMAP 1 UMAP 1
Low High | Low [N High

Signature score Predicted similarity
to query cell state
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Reference mapping in Seurat V4 (Hao et. al. Cell, 2021)

* Can integrate multi-modal data (we only describe the version for scRNA-seq data here)
* Low-dimensional projection using sPCA
 Project the reference data by Z = UTX , and then project the query data using the same U
* (Can not use CCA any more
e Howtofind U?
e Construct a cell-cell similarity matrix L (for example from KNN)
* Find U that maximized the Hilbert-Schmidt Independence Criterion (HSIC):

HSIC ((UTX)"UTX, L)

= —-tr (XTUUTXHLH)
(n—1)
where H is the centering matrix Hi =1- n'ee’

e This is equivalent to

argmax tr(U'XHLHX'U)
U

subject to UTU =1

* Solution: U is the eigenvector of matrix XHLHXT (PCA: eigenvector of XHHXT = XHXT)
* In Seurat V5 they will use Laplacian eigen decomposition (will discuss in later lectures)



Reference mapping in Seurat V4 (Hao et. al. Cell, 2021)

* Can integrate multi-modal data (we only describe the version for scRNA-seq data here)
* Low-dimensional projection using sPCA
* Problem with CCA: can not keep the reference embeddings fixed

* Find anchor cell pairs between the reference data and the query data
* Project the query data onto the reference using the kernel weighting of anchor differences
vectors as in Seurat CCA V2 (Seurat V3)
* Define the weight matrix between all query cells and anchor cells as matrix W

e Cell type label transfer:
* Assign the same cell type label to anchor cells in the query data by the cell type labels of
their pairs in the reference dataset
e Prediction score of the transferred labels:

P = Lwt
L are the labels of reference anchors

* Should be easy to assign an anchor similarity score to each cell to identify cells that can
not be assigned well (unknown new cell types) [Similar idea implemented in scArches]



Symphony (Kang et. al., Nature Communications 2021)

e Cell-cell similarity-based reference mapping for joint visualization and label transfer
* Main Steps
* Integrate reference data from different batches using Harmony

Harmonized b Symphony Minimal
Reference Datasets Reference Embedding Reference Elements
- Cluster-specific
EE LA , A Ah/migr models for PCs
PCA & N Symphony & \
EAEEA Harmony dataset > Compression * X
A AA integration P
>
Compress mixture
- model components e
| | L]
L ]

* Project the query data on the PC space of reference data by linear rotation
T
Zq =U" Ggs
» Soft assign cells to reference clusters (based on the reference centroids of the clusters in the

o ? .
harmonized space?) min 2}; Rl Zs — Yiu [ sRy i log(Rx i)

s. t. VinR[k’i} > 0, V; ZR[k,i} =1
k



Symphony (Kang et. al., Nature Communications 2021)

* Cell-cell similarity-based reference mapping for joint visualization and label transfer

* Main Steps

* Integrate reference data from different batches using Harmony

* Project the query data on the PC space of reference data by linear rotation

* Soft assign cells to reference clusters

Zq = UG

 Assumes that there is no new unknown cell type

* Move query cells within each cluster by subtracting the batch and cluster specific mean

effect v

Symphony Mapping

Query Dataset 1. Project cells

into PC Space
»
>

Perform linear regression on
query batches for query cells
within each cluster

?

2. Soft assign cells to
reference clusters

3. Assign mixture
model components

u

Query Embedding

»
>

4.Remove
cell-specific
correction
values («--)

Query Annotations

Approximate location of query cells
in harmonized reference embedding

Y

Downstream transfer
of reference annotations
(e.g. cell types)
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New deep learning-based methods using transformer

* |nstead of using autoencoder, researchers

| am a student

have also tried using more complicated 3
. . (- ~ 1 ~
deep learning models like transformer ENCODER -( DECODER )
y TranSformer ENC:)DER ( DEC;DER J
* Originally used for translation ) . £
. ENCODER [ DECODER J
e A tutorial for transformer: L . .
Jay Alammar, The lllustrated ] ST ( AREETE )
) )
Transformer i ENCODER ) ( DECODER )
) )
ENCODER [ DECODER J
* Using transformer instead of autoencoder - ¥ /
fOF SC RNA‘Seq Je  suis étudiant
* Provides embedding of each gene )
. ) ~
. E.xp-I|C|t.Iy make use of gene gene N
similarity by self-attention t b I
f'
[ Feed Forward J Encoder-Decoder Attention
) — I
Self-Attention Self-Attention

t t
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A bit more details about a self-attention layer

Input embeddings

Parameters
to train
Input Thinking Machines
Embedding x XL T
Queries o Djj q2D:|] wa
Keys [T 1] [T 1] WK
Values ijj Vsz] Wv

Also have embedding for a position of a word

Word-word similarity matrix

corena( TH " 1)
/

Output embeddings
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Geneformer (Theodoris et. al., Nature 2023)

* Pre-trained model is based on 29.9M human cells from 561 datasets using droplet-based
platforms
e Labels of a cell include organ, platform, cell type (if provided by the original paper)

Pretraining
* Instead of using the original gene expression, use the ranking of genes (after scaling)
within a cell as the input (similar to quantile normalization)
* That creates a position of a gene (word) within a cell (sentence)

c Rank value encoding .
Transformer encoder unit
— -
T - c Contextual gene
Gene H G o) .
§el o 2 and cell embeddings
e} c = T = =
- @ o i =@ S
S | GeneY = = g = =
. _ fe)) -la-'.’
Slngle_ cell 3 2 E|l—| 82 £ Contgxtual .
transcriptome @ @ o I = o attention weights
< | Gene A = < o = S
c [0} [ o) 3 f
§ e
ene S 9 Contextual
Eare L predictions

x6

* The self-attention layers create embeddings of each gene
* Cell embedding can be obtained by weighted average of gene embeddings
* Unsupervised learning (no decoder units)

* Objective function: prediction accuracy of randomly masked genes



Geneformer (Theodoris et. al., Nature 2023)

* Pre-trained model is based on 40M human cells from 561 datasets using droplet-based

platforms

* Labels of a cell include: organ, platform, cell type (if provided by the original order)

Pretraining

Self-supervised large-scale pretraining

* Fine-tuning
e Specific tasks: gene classification,
cell classification
 Add afinal task-specific
transformer layer

Genecorpus-30M

Self-supervised

* Initialize the model with § pretraining
. . Y o
pretrained weights o B

Pretrained
Geneformer

/'

Copy
weights

D ——

N

Democratize
fundamental
understanding of
network dynamics
to vast array of
downstream
applications

Fine-tuning with limited task-specific data

Limited task-specific
data for task 1

l Fine-tuning
Fine-tuning
Model for layer for
fine-tuning | | | 1aSk1 Taskt
task 1 predictions
Fine-tuning
Model for layer for
five-tuning || | 18KN_ Task
task N predictions
T Fine-tuning

Limited task-specific
data for task NV



Related papers

* Han, X., Wang, R., Zhou, Y., Fei, L., Sun, H., Lai, S., ... & Guo, G. (2018). Mapping the mouse cell atlas by microwell-seq. Cell, 172(5), 1091-
1107.

* Schaum, N., Karkanias, J., Neff, N. F., May, A. P., Quake, S. R., Wyss-Coray, T,, ... & Weissman, |. L. (2018). Single-cell transcriptomics of 20
mouse organs creates a Tabula Muris: The Tabula Muris Consortium. Nature, 562(7727), 367.

* "Asingle-cell transcriptomic atlas characterizes ageing tissues in the mouse." Nature 583, no. 7817 (2020): 590-595.

* Wang, J., Agarwal, D., Huang, M., Hu, G., Zhou, Z., Ye, C., & Zhang, N. R. (2019). Data denoising with transfer learning in single-cell
transcriptomics. Nature methods, 16(9), 875-878.

* Lotfollahi, M., Naghipourfar, M., Luecken, M. D., Khajavi, M., Blttner, M., Wagenstetter, M., ... & Theis, F. J. (2022). Mapping single-cell data
to reference atlases by transfer learning. Nature biotechnology, 40(1), 121-130.

* Heimberg, G., Kuo, T., DePianto, D. J., Salem, O., Heigl, T., Diamant, N., ... & Regev, A. (2024). A cell atlas foundation model for scalable
search of similar human cells. Nature, 1-3.

* Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W. M., Zheng, S., Butler, A., ... & Satija, R. (2021). Integrated analysis of multimodal single-cell
data. Cell, 184(13), 3573-3587.

* Kang, J. B.,, Nathan, A., Weinand, K., Zhang, F., Millard, N., Rumker, L., ... & Raychaudhuri, S. (2021). Efficient and precise single-cell reference
atlas mapping with Symphony. Nature communications, 12(1), 5890.

* Theodoris, C. V., Xiao, L., Chopra, A., Chaffin, M. D., Al Sayed, Z. R., Hill, M. C., ... & Ellinor, P. T. (2023). Transfer learning enables predictions
in network biology. Nature, 618(7965), 616-624.



	Slide 1: Lecture 10  Reference mapping and transfer learning
	Slide 2:  Outline
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Related papers

