Lecture 11
scATAC-seq technology,
preprocessing and dimension
reduction



Outline

* SCATAC-seq technology

* sSCATAC-seq preprocessing and quality control
* Peak calling
* Filtering low-quality cells
* Doublet detection
* Barcode multiplets

* Dimension reduction and feature transformations



Epigenomics and scATAC-seq
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DNA is packaged inside the nucleus

Make DNA fit into the nucleus and stable
Controls the activity of DNA: inactive if tightly packed

The basic unit is called nucleosome: DNA wrapped around 8
histone proteins

Epigenomics:

Modification of DNA / histones that does not alternative
the DNA sequence
Understand regulation of gene expression

Single-cell ATAC-seq:

measure the open regions of DNA

(chromatin accessibility)

Understand how nucleosome positioning regulates
gene expression (transcriptional activation)



How is chromatin accessibility influenced?
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e Transcription factor (TF):
e proteins that help
turn specific genes
"on" or "off" by
binding to nearby
DNA
* Promotor: a region of
DNA upstream of a gene
where relevant proteins
such as TF bind to initiate
transcription
* Enhancer: region
of DNA that can be
bound by proteins to
increase likelihood of
transcription



ATAC-seq for measuring chromatin accessiblity

» ATAC-seq (Assay for Transposase-Accessible Chromatin with high-
throughput sequencing) (Buenrostro et. al. Nature Methods 2015)
* chromatin is fragmented and simultaneously tagmented

NFR fragments

with sequencing adapters using the Tn5 transposase
NFR fragments: represent the open chromatin
nucleosome-bound fragments: reflect nucleosome position
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Compared with other techniques, ATAC-seq requires few
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SCATAC-seq by 10x GeENnomics (satpathy et. al., 2019)

* Nuclei are transposed (chromatin fragmented and simultaneously tagmented) in bulk before

isolated in a suspension
* Transposed DNA are amplified inside each nuclei first before PCR amplification
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e Can easily remove duplicated fragments



How does scATAC-seq data look like?

b Y
peaks
fastq debarcodlng & bam ‘a\\
allgnment co(/

raw sequencing allgned
reads sequencing reads
processed data
c
bulk cell 1 l l
ATAC-seq|_| . I, l.
aggregated 1 ' ' ‘
SCATAC-seq. , . _ 4 | L
HHffm A M e b genes

: | fragments
! 2
i
- 0

[ B B B B peaks

single cells

* ScATAC-seq preprocessing steps (Chen et. al.
Genome Biology 2019)

* SCcATAC-seq peak by cell matrix is extremely
sparse (much sparser than scRNA-seq)
 DNA only have two copies per cell
* 1-10% detection rate of accessible peaks
* 10-20times feature size than scRNA-seq
e Can have more than 2 fragments in a peak
before amplification
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Peak calling for scATAC-seq

* Peak calling methods have been developed for a long time for other types of
epigenetic data

e Various ways to detect peaks
* Detect peaks based on a reference bulk ATAC-seq data
* Detect peaks based on pseudo-bulk ATAC-seq data (ignore cell barcode to create
a “bulk” dataset)
e Perform clustering first and perform calling for each cluster of cells
(SnapATAC, Fang et. al., Nature communications, 2021)
* Aim to identify small peaks that only appear in small cell types
* To perform clustering without peaks
* Create cell-by-bin count matrix
* Segment the genome into bins (5kb size by default)
* Count the number of read in each bin and binarize the matrix

* One common method to detect peaks in MACS2



MACS?2 (Zhang et. al. Genome Biology, 2008)
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* SCATAC-seq is paired-end, call peaks only use NFR fragments (fragment __ ¥ Z°%
length less than 100bp) 3':Q;‘r

* Oruse all reads and treat them as single-end W Chlé\gﬂfﬁﬁ%?ﬁ%’?ﬁents
* Need to recenter the reads AXOKE
\/V\/\/\M sequenced section
align to l (“tag” or “read”)
reference genome

* Core steps when analyzing scATAC-seq
* Remove duplicate reads: reads at the exact same location .
* Recenter the reads setting d = 200 *-g;_ |
e Peak detection L yant'sensetags
* Slide 2d window across the genome to find peaks
* Given any window of the genome, assume number of reads follow a
Poisson distribution with mean A;, 4] if there is no peak (null)
Mocal = Max(4gg, Ask, 410k)
* Compute a p-value for each window, selection all windows with small
p-values (107°)
* Merge nearby peak regions and identify peak center as the “summit”
— extend each read from its center by d so that reads can pile up

sense tags /




Quality control for scATAC-seq

* Detect low-quality cells

* General metrics: total fragment counts, number of features per Coha of ANA commrerast
N
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* Transcription starting site (TSS) enrichment ﬂ

* scATAC-seq fragments should be enriched near the TSS
* Select a random subset of TSS D Vo a—y
* For each TSS, compare number of overlapping a5 mlm,_h,, o J\mm one PN
fragments (+- 2000bp window) with nearby windows to !
calculate an enrichment score
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* Doublet detection
* Much more challenging as the scATAC-seq has much higher

sparsity
* |f we use similaridea as in scRNA-seq, need to aggregate
correlated features (https://www.sc-best-

Dractices.org/chromatin_accessibilitv/quaIitv_controI.htmI)
* A different idea: At most two fragments detected per location in

a single cell



https://www.sc-best-practices.org/chromatin_accessibility/quality_control.html
https://www.sc-best-practices.org/chromatin_accessibility/quality_control.html

AMULET (Thibodeau et. al.,, Genome Biology 2021)
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Barcode multi plEtS (Lareau et. al., Nature Communications 2019)
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Barcode multiplets in scRNA-seq can be challenging to
detect



Barcode multi plEtS (Lareau et. al., Nature Communications 2019)

a
AN > aas———— Same Tn5
/ insert
Bead Cellular —a LI
oligos nucleic acids
Read —3a Pairwise > W 1 040000 Inference
Amplification Alignment BB Jaccard index W 04 1 0000 of multiplets
W 00 00 1 00
0.0 00 0.0 1
|
Same fragment Accessible
i Annotated
tagged by 2+ beads chromatin peak e arcode multiplets
. . . - o8 200 beads /L
* Compute Jaccard index over the insertion positions of - e
. . . . o X ,
reads, providing a measure of how similar the Tn5 g | 5\ = Not-merged
insertions were for any pair of bead barcodes 8" \
"'g 02 \'\
AN B| |AN B| g o i
J(A,B) = 1 _
AUB|  |A[+|B|-|AN B L
- o2 58 58 §§
rank-sorted barcode pairs B



SCATAC-Seq count matrix (Martens et. al. Nature Methods 2024)

e Peak * cell count matrix

e Count number of reads or
number of fragments that
overlap with peak region

e Should count number of
fragments to avoid bias

* For a specific region, number of
fragments follow Poisson
distribution across cells

* Binarize the peak * cell matrix:

e Entry=1if there are any
fragments detected overlap with
the peak region

e Binarization is shown to hide
guantitative information and not
helpful
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PCR amplification and
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@ Alignment of read pairs

@ Peak calling on multiple cells
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peak region per cell
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scATAC-seq normalization

* Normalize by total number of fragments per cell

* TF-IDF matrix transformation (Cusanovich et. al., Cell, 2018)

Normalize by gene and cell at the same time

Term Frequency (TF) - Inverse Document Frequency (IDF)
TF: total fragment normalization per cell TF = Gjj/F;
* F;:total number of fragments in cell j

IDF: log(1 + N/N;) N; total counts per peak across all cells

e Canalso directly use N/N; as IDF (Stuart et. al., Nature Methods 2021)

TF-IDF

)

TF-IDF =TF x IDF

e Can take log transformation if needed

Cell Ranger - ilter counts - TF-IDF
Filtered counts normalization

SVD after TF-IDF: latent semantic analysis
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ClS OpiC (Gonzalez-Blas et. al., Nature Methods, 2019)

* Core steps:
e Binarize the count matrix

* Topic modeling using Latent Dirichlet Allocation (LDA, Blei et. al., JIMLR 2003)

* (Generative process
1. Choose N ~ Poisson(£).
2. Choose 6 ~ Dir(at).

3. For each of the N words w,,:

(a) Choose a topic z, ~ Multinomial ().

(b) Choose a word w,, from p(w, | z,,), a multinomial probability conditioned on the topic

Zn.

* Each position in a document independently choose a topic
* Each topic has a topic-specific Multinomial distribution of words

e Solve the model:

Collection of

Gibbs sampling / variational Bayes / text documents

Expectation-propagation

Dataset

LDA Model

Creation of
Topics

Number of words in @ @
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\ ®®
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I M
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Dirichlet Dﬁzz‘:g":@m Word i BT = .
parameter C'Srodton -y Number of D1 D2 D3 D4
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ClS OpiC (Gonzalez-Blas et. al., Nature Methods, 2019)

Core steps:
* Binarize the count matrix
* Topic modeling using Latent Dirichlet Allocation (LDA, Blei et. al., JIMLR 2003)
* Treat each cell as a document and each region (peak) as a word
* Use Gibbs sampler to iteratively optimize two probability distributions:
* Region-topic distribution: the probability of a region belonging to a topic
* Topic-cell distribution: the contribution of a topic within a cell

* Determine the hyperparameters
* Number of topics K: fit a model with different K, find the smallest K that stabilize the

log-likelihood
e Dirichlet distribution hyperparameters
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pPed kVI (Gonzalez-Blas et. al., Nature Methods, 2019)

¢ Visualization e Technical effect removal
* Clustering
* Integration

¢ Batch effect correction

SCATAC-seq input
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* Imputation
» Differential accessibility

Probability of
accessibility

Probability of
observation

(xi,j > 0)~Bel“(yi,j-li-l‘j)

e Adaptation of scVI to
correct batch effects,
denoising, and perform
dimension reduction

* Main change:
distributional
assumption on count
data



pPed KV (Gonzalez-Blas et. al., Nature Methods, 2019)

* (Martens et. al. Nature Methods 2024) finds that using the Poisson model with
counts without binarization and use observed region-specific and cell-specific
factors instead of estimated factors can improve performance of peakVI
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DISTAL PROMOTER

Gene activity score T T—

* Transfer the peak * cell matrix to gene * cell matrix
» Aggregate peaks around promoter region of a gene

e Cicero (Pliner et. al. Molecular Cell, 2018)
e Overall measure linked to each gene k using peaks that
belong to proximal or distal sites of gene TSS

ENHANCER CORE PROMOTER

— .. upj . | PROXIMAL PROMOTER
Rii = ZpeP Zjer Aﬂ Y + API

D, Uk
Where P indexes the promoter proximal sites of k, D, indexes distal sites linked to
proximal site p, and u is the Cicero co-accessibility score linking distal site j to proximal
site p, and A is the binary score for accessibility at site j or p in cell i. In principle, D, could

include all distal sites linked to p, but here we restrict the set to distal sites that are
differentially accessible (FDR< 1%) across pseudotime.

e Signac (Stuart et. al. Nature Methods, 2018)
* Count number of fragments overlapping the gene body and a
2-kb upstream region for each gene in each cell
* Apply scRNA-seq methods on gene activity score matrix



Transcriptional factor activity matrix
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* Motifs: DNA biding sites (has a specific structure) -
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* ChromVAR (Schep et. al., Nature Methods 2017) — ——
* Motif enrichment of each cell
« Motif matching matrix W: motif by peak matrix ¢ PROTEIN

e for a list of motifs, calculate the frequency of
each motif within any peak regions

- MxX' -MxE' po_ Zi=ij

Y ET | = » X:
T —X D %
MXE LicZi=Xij o

* Can adjust for other peaks that contain similar motifs (background peaks) to adjust for
local bias
* Transcriptional factor activity of each cell
* For each TF, select a representative subset of motifs
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