
Lecture 12 
single-cell multi-omics 

integration



Outline

• Multi-omics data integration
• Integrate unpaired multi-omics data

• Integration of scATAC-seq and scRNA-seq

• Integrate paired multi-omics data

• Integrate unpaired multi-omics data using paired data as bridges



Integration between scRNA-seq and scATAC-seq
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Why do we integrate?
• Identify cell-specific regulatory network
• scATAC-seq data is extremely sparse → borrow information from scRNA-seq for better cell type 

annotation 
Challenge: require extra information about feature connections



Integrative single-cell analyses
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• Many technology only measure one modality of the single cells → unpaired multi-omics data
• Experimental methods have been developed to measure multiple modalities but can be more 

expensive



Integration of scRNA-seq and scATAC-seq

5

• Seurat v3 (Stuart et. al. Cell, 2019) : 
• Obtain gene activity matrix using Signac for scATAC-seq, treat as scRNA-seq data and integrate
• Similar ideas used in scJoint (Lin et. al., Nature Biotech, 2022) and LIGER (Liu et. al., Nature Protocols, 2020)

• Coupled NMF (Daren et. al., PNAS, 2018)
• Core idea: perform coupled clustering, making 

sure that feature loadings are similar after 
transformations

• Α: coupling matrix, gene-peak prediction matrix 
where each peak is predicted by sets of genes 
learnt from paired mRNA-ATACseq bulk data

• Challenges: 
• Single-cell and bulk level data can have 

platform specific biases
• Can not guarantee that 𝐻1 and 𝐻2 can be 

properly merged 

Linear prediction operator



GLUE (Cao and Gao, Nature Biotech, 2022)
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• General integration of unpaired 
multi-omics data

• Build a separate VAE for each 
modality data for cell embeddings

• Build feature embeddings using the 
variational graph auto-encoders 
(VGAE, Kipf and Welling, Arxiv, 2016)

• Build a guidance graph (signed and 
weighted, possibly multi edges 
between two nodes) based on prior 
knowledge on regulatory 
interactions across features from 
different modalities 
• Peak and gene are linked if they 

overlap with the gene body or 
proximal promoter regions



GLUE (Cao and Gao, Nature Biotech, 2022)
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• Idea of VGAE

Target Confounding covariates?

Data (input and output)



GLUE (Cao and Gao, Nature Biotech, 2022)
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Some further details:
• GLUE is robust to corruption of the graph even 90% of the 

edges are random

• How to combine the VGAE for feature embeddings and VAE 
for cell embeddings?
• Cell embeddings are transformed based on feature 

embeddings
• Linear decoder like SVD: for a cell 𝑖 in dataset 𝑘, the 

predicted data has the form

ො𝜇𝑖
(𝑘)

= 𝑈𝑖 𝑉(𝑘) 𝑇

• Need extra penalty to assure that cell embeddings are 
aligned across modalities (correct for batch effects)
• Train a classifier (discriminator) to separate different 

datasets based on the cell embeddings
• Penalize the loss if the discriminator has small 

classification error



Single-cell multi-omics
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• Paired single-cell multi-omics can be used as 
bridges to learn feature relationships across 
modalities



Simultaneous measure of mRNA and chromatin accessibility

10

Share-seq (Ma et. al., Cell 2020)

SNARE-seq (Chen et. al., Nature Biotech 2019)



Simultaneous measure of mRNA and surface protein
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• Proteins can more reliably indicate cellular activity and 
function

• Cell surface proteins: play crucial role in effective 
communication between the cell and its environment

• About 25% to 30% of human genes encode for 
membrane proteins 

• Common technologies: REAP-seq (Peterson et. al., Nature 
Biotech 2017), CITE-seq (Stoeckius et. al., Nature 
Methods 2017)



CITE-seq workflow
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Integrate paired single cell multi-omics data
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• Seurat v4 (Hao et. al. Cell, 2021)

• Core challenge: need to consider multiple sets of features when calculating cell-cell similarity

• Core idea: calculate a weighted NN graph with cell-specific weights
• Generate KNN graph within each modality
• Within-modality and cross-modality prediction based on KNN (4 prediction values)

• Calculate similarity between predicted values and observed values
• For example:

• Calculated cell-specific modality weights: higher weights on protein if protein neighbors predict  
better than mRNA neighbors → the neighbors better reflect the molecular state of the cell



MOFA+ (Argelaguet et. al., Genome Biology 2020)
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• Apply Linear factor model on the data
• Apply spike-and-slab prior on both the feature factors and cell factors

• Result in sparse feature factors and cell factors
• Very challenging to solve, the authors used stochastic variational inference
• Can deal with non-Gaussian likelihood, but very slow

• Should be (easy) to allow missing blocks (mosaic data) when performing the factor analysis (not 
implemented in the paper)



Multi-omics cells as bridges to integrate unpaired data 
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StabMap (Ghazanfar et. al., Nature Biotech, 2024)
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• Essential idea: imputing the missing entries using linear factor analyses
• Simpler example integrating three datasets, scRNA-seq, scATAC-seq, SNARE-seq

• Core steps:
• For each reference data 𝑟 (a reference data can have only one modality), obtain a linear 

embedding of the cells (use PCA [no cell labels] or LDA if cell labels are given)

• Dataset 𝐷𝑟 (cell by gene), feature loading (embedding) 𝐴𝑟 
• For dataset 𝑖 that only overlap part of the features with 𝑟, 

• Predict the cell embeddings 𝑆𝑖
𝑟 using the linear regression



StabMap (Ghazanfar et. al., Nature Biotech, 2024)
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• Core steps:
• For each reference data 𝑟 obtain cell embeddings

• For dataset 𝑖 that overlap part of the features with 𝑟
• predict the cell embeddings 𝑆𝑖

𝑟 using linear 
regression

• If dataset 𝑖 doesn’t have overlapping features with 𝑟 
• estimate 𝑆𝑖

𝑟 iteratively through a sequence of 
datasets that have overlapping features with 
each other

• For each dataset, concatenate all embeddings as the 
final embedding

• Can choose various reference datasets and 
concatenate

• Still need to perform batch correction on the final embedding
• Regression may not be the best way to do factor analysis with missing entries

• For example, one can directly perform missing value SVD



Seurat v5 (Hao et. al., Nature Biotech, 2024) 
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• Build reference using scRNA-seq and map cells of any modality onto a shared latent space



Seurat v5 (Hao et. al., Nature Biotech, 2024) 
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Core steps:
• Data integration within modality across all datasets (can use various methods for batch correction)

• Only need to integrate low-dimensional space.
• When merging between multiome and unimodal data, can use other modality as supervision in 

dimension reduction  
• Supervised PCA (sPCA): Construct a cell-cell similarity matrix 𝐿 using both modalities

• Find U that maximized the Hilbert-Schmidt Independence Criterion (HSIC):



Seurat v5 (Hao et. al., Nature Biotech, 2024) 

20

Core steps:
• Construct dictionaries for each unimodal dataset

• Dimension reduction based on the multiomics 
data (𝐺 as KNN similarity defined based on 𝑀∗):

•  Find 𝑈𝐿 as the eigenvectors of the 𝑘 
smallest eigenvalues (except 0) of 𝐿

• Map the unimodal data as the weighted 
average of the multi-omics cells

• Align the two datasets



Seurat v5 (Hao et. al., Nature Biotech, 2024) 
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• Comparison with Seurat v3?



Seurat v5 (Hao et. al., Nature Biotech, 2024) 
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• Comparison with Seurat v3?

Matched cell 
label similarity

Seurat V3



Seurat v5 (Hao et. al., Nature Biotech, 2024) 
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MaxFuse (Chen et. al., Nature Biotech, 2023)
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• Core idea: smooth over similar cells and features to help find cell-cell pairs across modalities

• Inputs: 
• two unpaired single modality datasets
• A pre-trained feature prediction model projecting both datasets on the same space
• Noisy projection because the pre-trained model may not be reliable



MaxFuse (Chen et. al., Nature Biotech, 2023)
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• Initial smoothing of the projected data
• Create meta cells within modality by Louvain clustering if data is too sparse
• Find KNN for within each dataset based on the original feature space
• (fuzzy) smooth the projected data by similar cells within each modality

• A weighted average between itself and the smoothed representations

• 𝐺𝑌: sparse Similarity matrix (KNN connectivity), 𝐾𝑌 = diag(𝑘1
𝑌, … , 𝑘𝑛

𝑌): number of nearest neighbors



MaxFuse (Chen et. al., Nature Biotech, 2023)
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• Initial smoothing of the projected data

• Find initial matched pairs by optimal matching
• 𝐷0: Euclidean distance between two cells cross

modalities based on projected data 

• Given the matched pairs of cells, perform CCA of two datasets in the original feature space
• CCA for the features instead of cells in Seurat
• Perform PCA first within each dataset to reduce dimension
• Obtain a new joint embedding of all cells from CCA

• Iterative refinement
• Compute joint mapping via CCA using matched pairs of cells
• (fuzzy) smoothing over similar cells 
• Apply optimal matching to find matched pairs of cells

• Similar to Seurat, only using a subset of pairs of cells as the anchor (pivot) pairs



MaxFuse (Chen et. al., Nature Biotech, 2023)

27

Using all 228 antibodies

Using 30 antibodies
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