Lecture 14 Identify SVG, cell type deconvolution, imputation for spatial transcriptomics

Outline

Identify spatially variable genes

Cell type deconvolution

- Imputation
 - Impute missing genes for image-based data
 - Increase the resolution of sequencing-based data

Moran's I score in Squidpy

Moran's I score

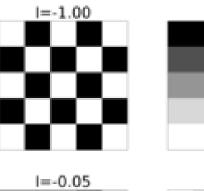
Measurement of spatial autocorrelation

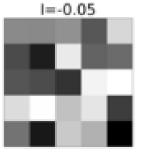
$$I = rac{N}{W} rac{\sum_{i=1}^{N} \sum_{j=1}^{N} w_{ij} (x_i - ar{x}) (x_j - ar{x})}{\sum_{i=1}^{N} (x_i - ar{x})^2}$$

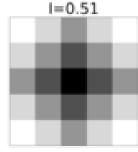
where

- N is the number of spatial units indexed by i and j;
- $\bullet x$ is the variable of interest;
- $\bullet \bar{x}$ is the mean of x;
- $ullet w_{ij}$ are the elements of a matrix of spatial weights with zeroes on the diagonal (i.e., $w_{ii}=0$);

$$ullet$$
 and W is the sum of all w_{ij} (i.e. $W=\sum_{i=1}^N\sum_{j=1}^N w_{ij}$).







- Construct p-value for each gene
 - Under the null of no spatial autocorrelation (for specific definitions see Wikipedia)

$$E(I) = rac{-1}{N-1} \qquad ext{Var}(I) = rac{NS_4 - S_3S_5}{(N-1)(N-2)(N-3)W^2} - (E(I))^2$$

Convert into z-scores and compute p-value

SpatialDE (Svensson et. al. Nature Methods 2018)

Main idea: for each gene assume a Gaussian process model

$$P(y | \mu, \sigma_s^2, \delta, \Sigma) = N(y | \mu \cdot 1, \sigma_s^2 \cdot (\Sigma + \delta \cdot I))$$

- Common mean across all spots / cells
- Covariance depend on spatial locations

$$\Sigma_{i,j} = k(x_i, x_j) = \exp\left(-\frac{|x_i - x_j|^2}{2 \cdot l^2}\right)$$

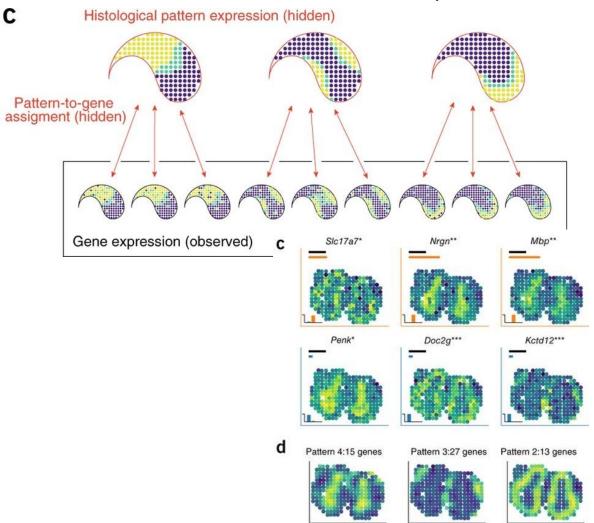
- Construct p-values: likelihood ratio test testing whether $\Sigma=0$
- Model selection to find out the spatial pattern if a gene is rejected:
 - assuming periodic covariance and linear covariance

SpatialDE (Svensson et. al. Nature Methods 2018)

Expression histology

• Perform gene clustering using a hierarchical mixture model on features (based on μ)

$$\begin{split} P(Y, \mu, Z, \sigma_e^2, \Sigma) &= P(Y \mid \mu, Z, \sigma_e^2) \cdot P(\mu \mid \Sigma) \cdot P(Z) \\ P(Y \mid \mu, Z, \sigma_e^2) &= \prod_{k=1}^K \prod_{g=1}^G N(y_g \mid \mu_k, \sigma_e^2)^{(z_{g,k})} \\ P(\mu \mid \Sigma) &= \prod_{k=1}^K N(\mu_k \mid 0, \Sigma) \\ P(Z) &= \prod_{k=1}^K \prod_{g=1}^G \left(\frac{1}{K}\right)^{(z_{g,k})} \end{split}$$



SpatialDE2 (Kats et. al. BioRXiv, 2021)

- Use Poisson model for the data
- Superior computational speed
- Core steps:
 - Tissue region segmentation using HMRF
 - Assume that gene expression counts follow Poisson distribution within each hidden state / cluster

$$\lambda_{gc} \sim \mathcal{G}(\gamma_1, \gamma_2)$$
 $y_{gn} \mid x_n = c, \lambda_g \sim \operatorname{Pois}(S_n \lambda_{gc})$

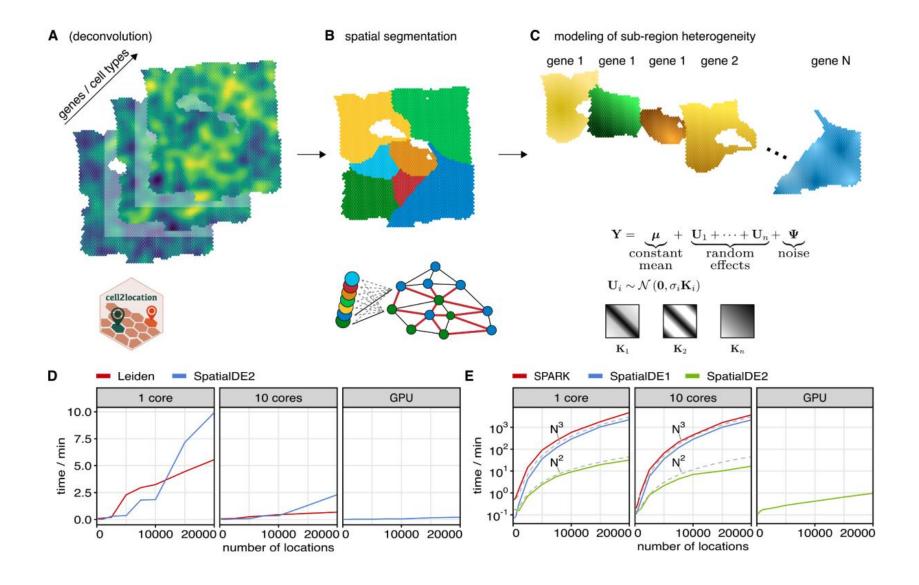
Detect spatially variable genes

$$\mathbf{e} \sim \mathcal{N} (\mu \mathbf{1}, \sigma_1 \mathbf{K}_1 + \dots + \sigma_k \mathbf{K}_k + \sigma_n \mathbf{I})$$

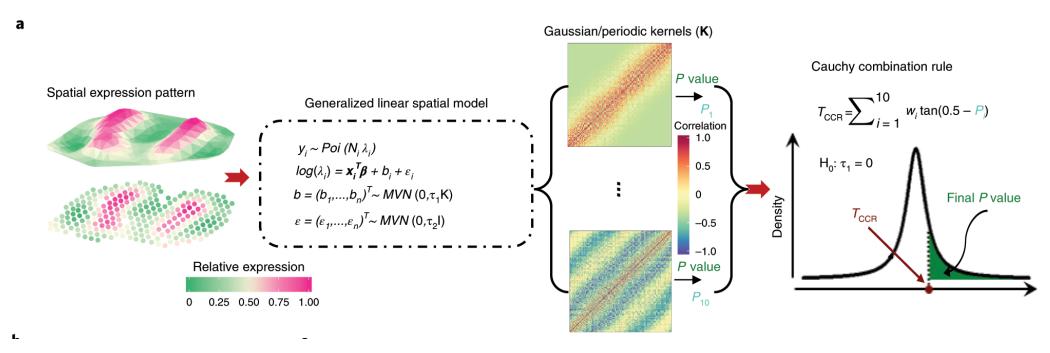
 $\mathbf{y} \mid \mathbf{e} \sim \operatorname{Pois} (\mathbf{s} \odot \exp(\mathbf{e}))$

- Use the GLMM score test and implement in GPU (details omitted)
- Need to transform data to Gaussian for gene clustering analyses
 - Use variational inference to speed up computation

SpatialDE2 (Kats et. al. BioRXiv, 2021)

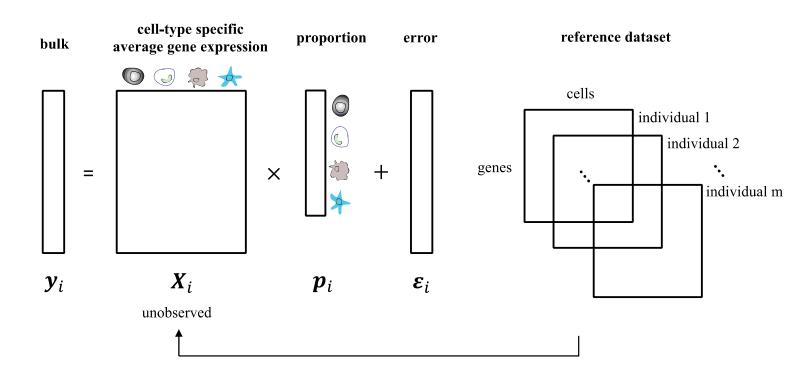


SPARK (Sun et. al., Nature Methods 2020)



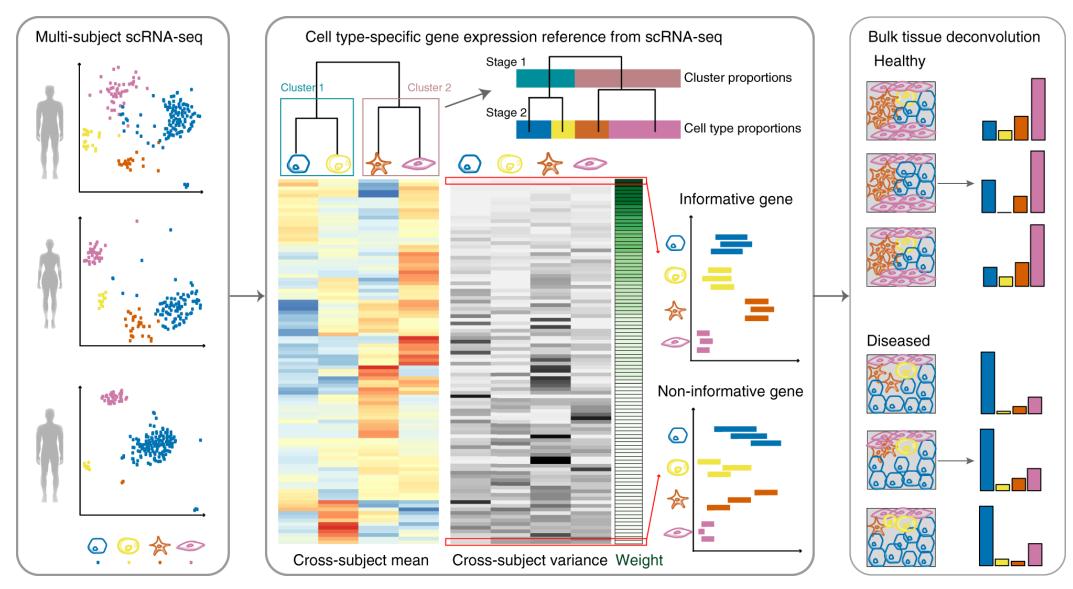
- Hierarchical Poisson GP model
 - Can adjust for confounding covariates such as cell types
 - Test for each specific kernel and combine p-values across kernels
 - Testing is challenging -> use a penalized quasi-likelihood algorithm
- As other GP models, computational cost is high
- The authors have later developed SPARK-X (Zhu et. al., Genome Biology 2021) to speed up
 - based on similarity test between gene covariance matrix and spatial similarity

Cell type deconvolution for bulk RNA-seq



- Main challenges (Xie and Wang, ArXiv, 2022):
 - Cell-type specific gene expressions from reference datasets may not be reliable
 - Variability of gene expression across individuals
 - Platform specific biases between bulk and single-cell RNA sequencing data
 - Missing cell types in the reference data
 - Genes are not independent across each other
 - How does the uncertainty in estimated cell types affect downstream analyses?

MuSiC (Wang et. al., Nature Comm, 2019)



MuSiC (Wang et. al., Nature Comm, 2019)

- Key steps
 - Normalize reference scRNA-seq data
 - Normalize by the library size but no transformations (why?)
 - A linear regression model:

$$Y_{jg} = C_j \cdot \left(\sum_{k=1}^K p_{jk} \, S_k \, heta_{jg}^k + \epsilon_{jg}
ight)$$

• Two constraints:

(C1) Non-negativity: $p_j^k \geq 0$ for all j, k; (C2) Sum-to-one: $\sum_{k=1}^K p_j^k = 1$ for all j

- $S_k \theta_{ig}^k$: absolute gene expression profiles for each cell type
 - scRNA-seq only provides relative abundance θ_{ig}^k
 - Assume S_k (cell size) is the same across all cell types
- Solve the model by Weighted non-negative least squares
 - Intuitively, marker genes should have higher weights
 - That intuition is wrong by Gauss-Markov theorem (Xie and Wang, ArXiv, 2022)
 - Give higher weights to genes that can be estimated and measured more accurately
 - Genes with less variability across samples for cell-type specific expressions
 - Genes has less technical noise

MuSiC (Wang et. al., Nature Comm, 2019)

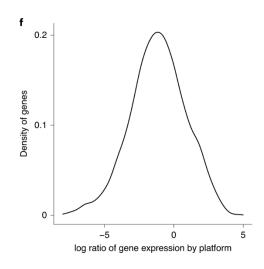
- Key steps
 - Normalize reference scRNA-seq data
 - A linear regression model:

$$Y_{jg} = C_j \cdot \left(\sum_{k=1}^K p_{jk} \: S_k \: heta_{jg}^k + \epsilon_{jg}
ight).$$

- Solve the model by Weighted non-negative least squares
 - Intuitively, marker genes should have higher weights
 - That intuition is wrong by Gauss-Markov theorem (Xie and Wang, ArXiv, 2022)
 - Give higher weights to genes that can be estimated and measured more accurately
 - Genes with less variability across samples for cell-type specific expressions
 - Genes has less technical noise
 - Iteratively reweighting in MuSiC
 - Estimate the variance of each gene given the current estimated p_{jk}
 - Inverse variance weighting to update the estimate of p_{jk}
- Recursive tree-guided deconvolution
 - Deconvolute major cell types first

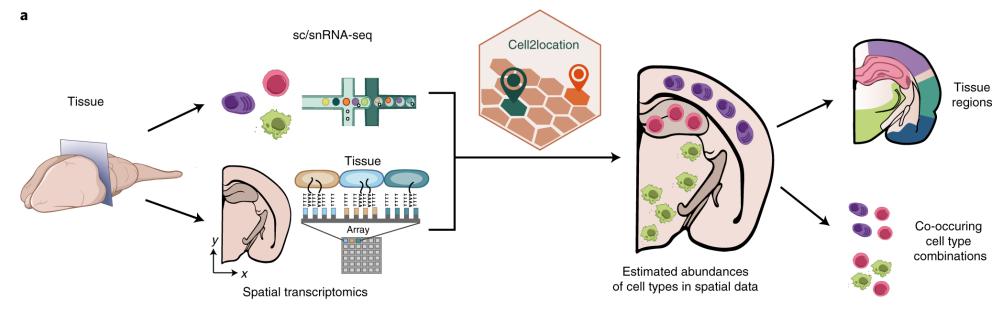
RCTD (Cable et. al, Nature Biotech 2022)

- Cell type deconvolution for spatial transcriptomics
 - Consider gene-specific biases across platforms
 - Does not smooth across spatial locations
 - Need to decompose many spots simultaneously
- Model $Y_{i,j} | \lambda_{i,j} \sim \operatorname{Poisson}(N_i \lambda_{i,j})$ $\log\left(\lambda_{i,j}\right) = \alpha_i + \log\left(\sum_{k=1}^K \beta_{i,k} \mu_{k,j}\right) + \gamma_j + \varepsilon_{i,j}$
 - $\beta_{i,k}$: cell type proportion per spot
 - γ_j : gene-specific biases, prior $\gamma_j \sim N(0, \sigma_\gamma^2)$
- Model fitting
 - Estimate cell-type specific gene expressions from the reference
 - Select marker genes for each cell type
 - Estimate γ_i by aggregating across spots
 - Identification issues if γ_j are arbitrarily different and only marker genes are selected? (Wang and Xie, Arxiv, 2022)



Cell2location (Kleshchevnikov et. al., Nature Biotech 2022)

• Goal: get spatial distribution of cells types → cell type deconvolution



Model for a spatial spot

$$\mu_{s,g} = \left(egin{array}{c} d_{s,g} \sim NB\left(\mu_{s,g}, lpha_{e,g}
ight) \ & \sum_{f} w_{s,f} \ g_{f,g} \ & + \underbrace{s_{e,g}}_{ ext{additive shift}}
ight) \cdot \underbrace{y_{s}}_{ ext{per-location sensitivity}}
ight.$$

Additive shift account for contaminating RNA

Cell2location (Kleshchevnikov et. al., Nature Biotech 2022)

$$\mu_{s,g} = \left(\underbrace{m_g}_{ ext{technology sensitivity}} \cdot \underbrace{\sum_f w_{s,f} \ g_{f,g}}_{ ext{cell type contributions}} + \underbrace{s_{e,g}}_{ ext{additive shift}}
ight) \cdot \underbrace{y_s}_{ ext{per-location sensitivity}}$$

• Hierarchical model on the proportions $w_{s,f}$ assuming factor models

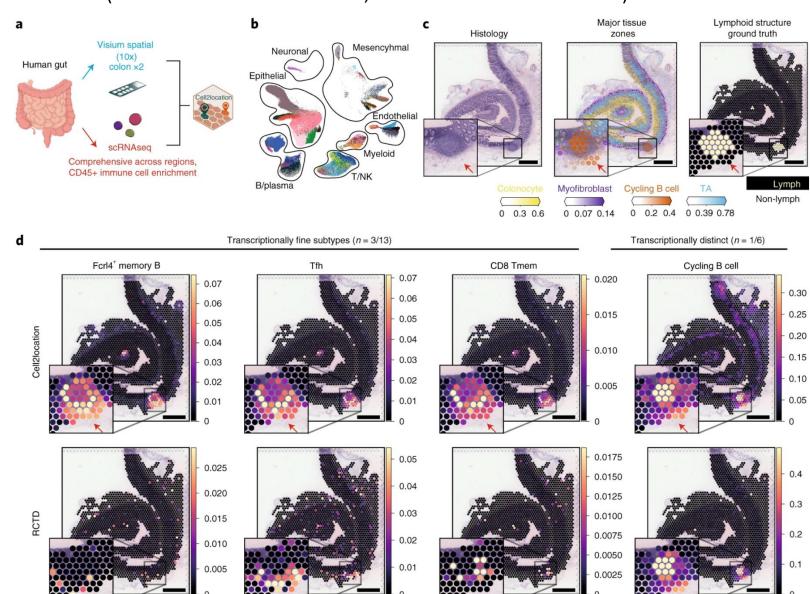
$$w_{s,f} \sim \mathtt{Gamma}(\mu^w_{s,f} v^w, v^w)$$
 $\mu^w_{s,f} = \sum_r z_{s,r} \, x_{r,f}$

Priors on the factors add some regularization?

$$z_{s,r} \sim ext{Gamma}(B_s/R, 1/(N_s/B_s)), \qquad N_s \sim ext{Gamma}(\hat{N} \cdot v^n, v^n) \qquad B_s \sim ext{Gamma}(\hat{B}, 1),$$
 $x_{r,f} \sim ext{Gamma}(K_r/R, K_r) \qquad K_r \sim ext{Gamma}(\hat{A}/\hat{B}, 1)$

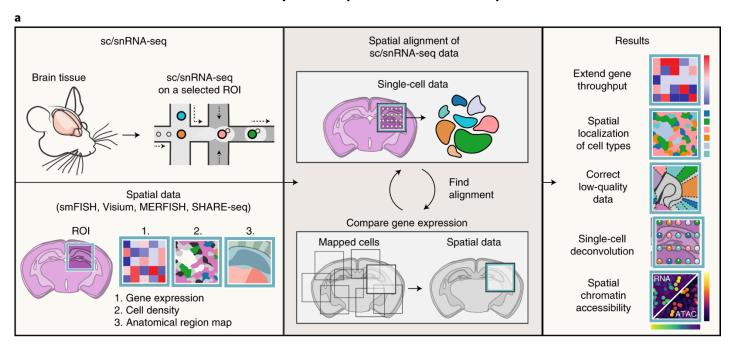
- Similar priors on other parameters
- Use Variational Bayes to solve the model
 - Seems to be challenging to solve

Cell2location (Kleshchevnikov et. al., Nature Biotech 2022)



Tangram (Biancalani et. al., Nature Methods 2021)

- Predict the spatial locations of each cell in sc/snRNA-seq data by leveraging spatial transcriptomics
 - Spatial transcriptomics can be either sequencing-based or image-based
 - Goals:
 - Impute missing gene expressions in image-based spatial transcriptomics
 - Denoising and cell type deconvolution for sequencing-based spatial transcriptomics data
 - Map sc/snRNA-seq data to spatial locations
 - Predict chromatin accessibility for spatial transcriptomics data



Tangram (Biancalani et. al., Nature Methods 2021)

- Cell mapping
 - Input: spatial voxel by gene matrix G, cell density vector d across voxels d, Cell by gene expression matrix S
 - Output: cell by voxel mapping matrix M
 - Loss function

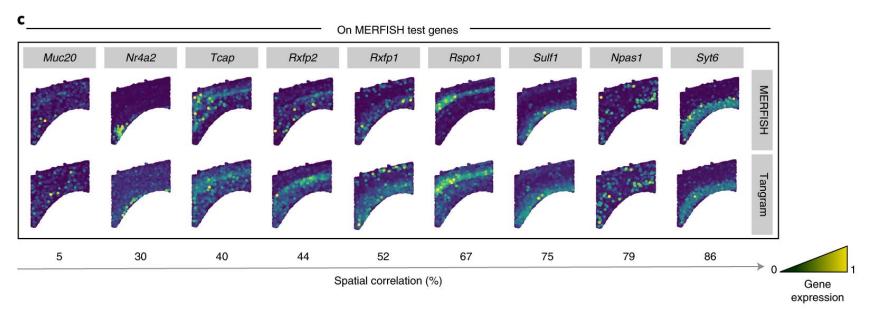
$$egin{align*} \Phi\left(ilde{M}
ight) &= KL\left(ec{\mathbf{m}}, ec{\mathbf{d}}
ight) - \sum\limits_{k}^{n_{genes}} cos_{sim}\left((M^TS)_{*,k}, G_{*,k}
ight) & m_j &= \sum\limits_{i}^{n_{cells}} M_{ij}/n_{cells} \ &- \sum\limits_{j}^{n_{voxels}} cos_{sim}\left((M^TS)_{j,*}, G_{j,*}
ight), & M_{ij} &= softmax(ilde{M})_{ij} &= rac{e^{ ilde{M}_{ij}}}{\sum_{l}^{n_{voxels}} e^{ ilde{M}_{il}} &= 0 \ &$$

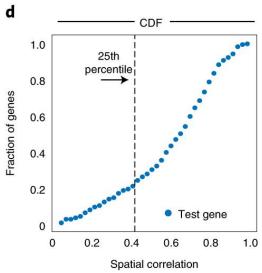
- Mapping only a subset of genes (mapping with a filter)
 - Include a real-values filtering vector $ilde{f}$ in training $f_i = \sigma(ilde{f}_i)$

$$egin{aligned} \Phi\left(ilde{M}, \stackrel{
ightarrow}{ ilde{f}}
ight) &= KL\left(\stackrel{
ightarrow}{oldsymbol{m^f}}, ilde{\mathbf{d}}
ight) - \sum_k^{n_{genes}} cos_{sim}\left((M^TS^f)_{*,k}, G_{*,k}
ight) \ &- \sum_j^{n_{voxels}} cos_{sim}((M^TS^f)_{j,*}, G_{j,*}) - \lambda_{r_1} \sum_{i,j}^{n_{cells}, \, n_{voxels}} M_{ij}log\left(M_{ij}
ight) \ &+ abs(\sum_i^{n_{cells}} f_i - ext{n}_{ ext{target_cells}}) + \sum_i^{n_{cells}} (f_i - f_i^2). \end{aligned}$$

Tangram (Biancalani et. al., Nature Methods 2021)

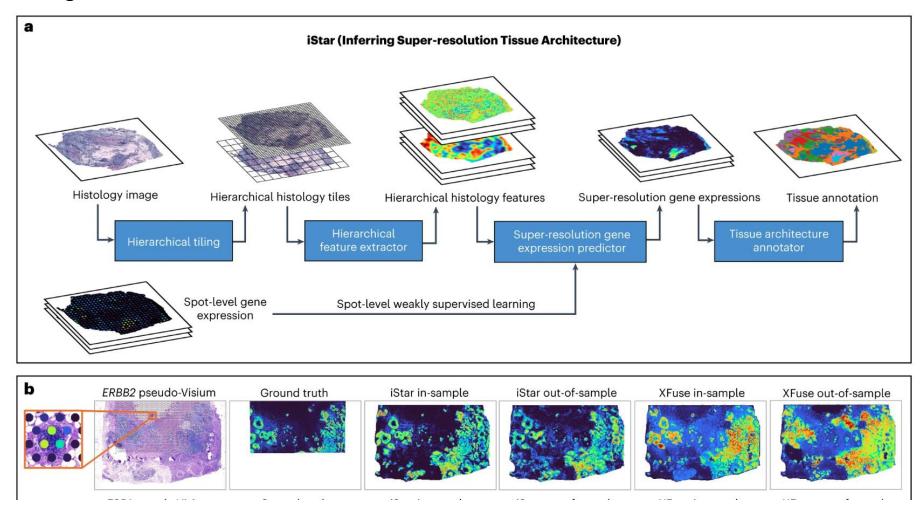
- Cell mapping
 - For image-based spatial transcriptomics, $n_{\text{deg}}(t) = n_{\text{deg}}(t)$
- Transfer cell type annotations in sc/snRNA-seq to spatial data based on M
 - For low resolution spatial transciptomics, assign a probability (cell type proportions)
 - For single-cell resolution data, assign to the cell type with maximum probability





iStar (Zhang et. al., Nature Biotech 2024)

• Making histological image as a guidance of the cell type at a higher resolution to increase the resolution of the sequencing-based data



iStar (Zhang et. al., Nature Biotech 2024)

- Key steps:
 - Extract histological features
 - Partition into image tiles hypercritically with different resolution: original pixel, 16*16 pixel blocks, 256 * 256 pixel blocks
 - Use hierarchical vision transformers (HViTs) to extract features from the image tiles
 - Each 16 * 16 block and 25 * 25 block receives a low-dimensional embedding (dimension C_1 and C_2)
 - Pretrain the HViTs model on public histological image
 - Final output:

histology feature image $H=[h_{mn}]_{m=1,n=1}^{M',N'}$ of size $M'\times N'$ with C_1+C_2+3 channels

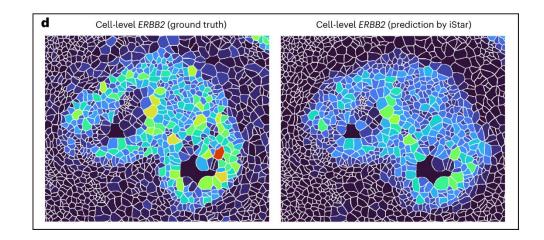
•
$$(M', N') = \left(\frac{M}{16}, \frac{N}{16}\right), \left(\frac{M}{32}, \frac{N}{32}\right), \left(\frac{M}{64}, \frac{N}{64}\right), \left(\frac{M}{128}, \frac{N}{128}\right)$$

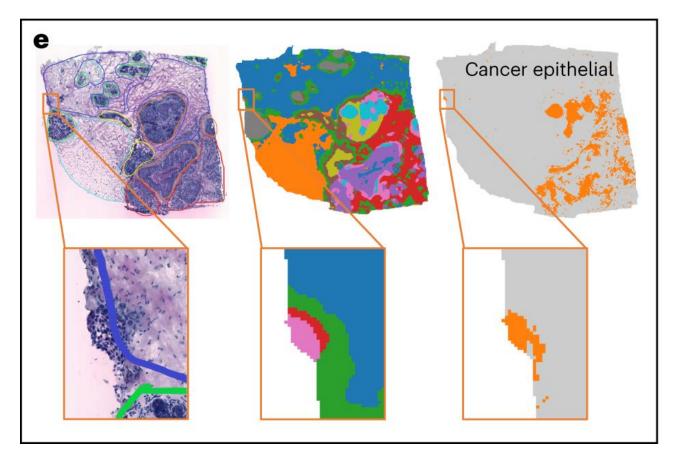
• Prediction super-resolution gene expressions

$$\mathscr{L} = \sum_{k=1}^{K} \sum_{s=1}^{S} \left(y_{ks} - \sum_{(m,n) \in \mathscr{M}_s} g_k\left(h_{mn}
ight)
ight)^2$$

- No use of scRNA-seq data at all for deconvolution
- If cell segmentation is provided, can obtain single-cell level gene expressions
- Only predict the top 1000 HVGs
- Provide cell type annotations of the regions

iStar (Zhang et. al., Nature Biotech 2024)





Related papers

- Svensson, V., Teichmann, S. A., & Stegle, O. (2018). SpatialDE: identification of spatially variable genes. *Nature methods*, 15(5), 343-346.
- Kats, I., Vento-Tormo, R., & Stegle, O. (2021). Spatial DE2: fast and localized variance component analysis of spatial transcriptomics. Biorxiv, 2021-10.
- Sun, S., Zhu, J., & Zhou, X. (2020). Statistical analysis of spatial expression patterns for spatially resolved transcriptomic studies. Nature methods, 17(2), 193-200.
- Zhu, J., Sun, S., & Zhou, X. (2021). SPARK-X: non-parametric modeling enables scalable and robust detection of spatial expression patterns for large spatial transcriptomic studies. Genome biology, 22(1), 184.
- Xie, D., & Wang, J. (2022). Robust Statistical Inference for Cell Type Deconvolution. arXiv preprint arXiv:2202.06420.
- Wang, X., Park, J., Susztak, K., Zhang, N. R., & Li, M. (2019). Bulk tissue cell type deconvolution with multi-subject single-cell expression reference. Nature communications, 10(1), 380.
- Cable, D. M., Murray, E., Zou, L. S., Goeva, A., Macosko, E. Z., Chen, F., & Irizarry, R. A. (2022). Robust decomposition of cell type mixtures in spatial transcriptomics. Nature biotechnology, 40(4), 517-526.
- Kleshchevnikov, V., Shmatko, A., Dann, E., Aivazidis, A., King, H. W., Li, T., ... & Bayraktar, O. A. (2022). Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology, 40(5), 661-671.
- Biancalani, T., Scalia, G., Buffoni, L., Avasthi, R., Lu, Z., Sanger, A., ... & Regev, A. (2021). Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram. Nature methods, 18(11), 1352-1362.
- Zhang, D., Schroeder, A., Yan, H., Yang, H., Hu, J., Lee, M. Y., ... & Li, M. (2024). Inferring super-resolution tissue architecture by integrating spatial transcriptomics with histology. Nature Biotechnology, 1-6.