Lecture 2
scRNA-seq technique and count
matrix QC



Outline

* Measurement error in sCRNA-seq experiments

* Quality control of count matrix
* Doublet removal
 Ambient RNA correction
 Remove low-quality cells



RNA sequencing: reverse transcription,
amplification and sequencing
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RNA sequencing: reverse transcription,
amplification and sequencing

1 reverse transcription
(reverse transcribe of RNA to cDNA)

RNA template
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Make mRNA fragments more stable

2 amplification
(amplify of cDNA by PCR)
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cDNA amplification
with specific primers
using PCR technique

RT-PCR product
(amplified cDNA)

How to know the corresponding
gene of the RNA fragment?
Map it back to the genome
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Increase the number of materials to sequence



Cell barcode for demultiplexing
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Fig. 2. Schematic of a fragment from a final Chromium™ Single Cell 3’ v2 library. *Can be adjusted.

e cell barcode: associate cDNAs to a specific cell
 UMIs: label specific cDNA molecules to avoid amplification bias



Unique molecular identifier (UMI)
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e each initial input cDNA fragment has its own unique tag



Obtain count matrix from reads

Cell
barcode ﬂ cDNA from transcript
| R1 | Rz |
| R1 | { Rz |
| R1 | [ R2 |
| R1 —— Rz ]
| R1 | {  R2 |
| Ri | { R2 |
| R1 | {  R2 |
| R1 | {  R2 |
| R1 | { Rz |
| R1 | {  R2 |

https://data-science-sequencing.github.io/Win2018/lectures/lecturel6/

Cell 3 Cell 2 Cell 1

Cell 4

Cellular barcode  UMI

v v

TTGCCGTGGTGT GGCGGGGA

...........

CGTTAGATGGCAGGGCCGGG
CGTTAGATGGCAACGTTATA
CGTTAGATGGCATCGAGATT

-----------

............. CGGTGTTA | DDX51
............. ccaceace | NOP2

............. aaaaTcec | ACTB

............. crcaTacT | [ BR
............. aceeeTac | ODF2
............. accccTTT | HIF1A

AARATTATGACGAAGTTTGTA

AAATTATGACGAAGTTTGTA

:I ACTB <4— 2 reads, 1 molecule

............. Gacreeac | RPS15

............. carrrrcT | GTPBP4
............. GTTGGCGT | GAPDH

AAGGCTTG
TTCCGGTC

............. TCCAGTCG

] ARL1<—- 2 reads, 2 molecules

...........

...........

(Thousands of cells)



Gene expression count matrix

Genel

Gene3

GeneM

Cell1 Cell2 ... CellN
3 2 13
2 3 1
1 14 18
25 0 0

Understand the cell population
Characterize each cell
Understand how gene
expressions change across cells
and gene-gene relationships

Next class: QC to improve the
quality of this matrix,
understand noise and signals in
the matrix



Propagation of measurement error

True
RNA molecules

Xgc

Measured
counts

Yye

»

" Reverse transcription:
RNA -> cDNA

Wy ~ Binomial(Xy¢, p1gc)
\-

cDNA amplification
Wye

Wgc = k_lzkrzk“‘[ﬂg:ffé]

Sequencing

Reads: Y, ~ Binomial (W, p,,)
UMI counts:

Yo ~ Binomial (W, 1 — (1 - pzﬂ)ugj

Acell c,ageneg

For UMI counts, roughly
Yyc~Binomial(Xy¢, a4c)

For non-UMI reads:
Yoe = 0if Wy =0
Yyc can be large if W,
due to amplification

Most of scRNA-seq data
nowadays use UMI



library size

* For UMI counts, roughly
YgC~Binomial(ch, agc)
where @, is the cell-gene-specific efficiency
* Assume that a,. = a.y, where a. is cell-specific efficiency and y, is a gene-specific bias

* Researchers have observed that a. can vary greatly across cells, but it is typically
unidentifiable (will talk more in later slides)

e Library size of a cell: total total sum of UMI counts across all measured genes in a cell
o= ) b
g
e Cells with large library size

* Large cells containing many mRNAs (like neurons), high-quality cells where mRNAs are
efficiently captured, doublets
e Cells with small library size
e Small cells containing few mRNAs, low-quality cells, empty droplets

Library size normalization: Y, is not comparable across cells, compare relative proportion
Yyc/lc across cells



Doublets

It is always possible that two (or more) cells
share the same barcode
* Common to have 10% - 20% doublets in
SCRNA-seq experiments
* More cells 2 higher proportion of doublets

primer beads
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Doublets or multiplets may have relatively large library size, but removing them simply

based on library size is not efficient

60000

@ H1975+H?28‘
2 A549 Hcc§27 H2228+HCC827
- A549+H5228 Hiogs+Heaes
£ 40000 H8383+HCC827 | isDoublet
[ o=
3 X A549+H8383 ¢ Germain, Pierre-Luc, et al.
E 975 HB383 A5494+H1975 -+~ TRUE "Doublet identification in single-
p-. A549 H2228| ¥ cell sequencing data using
da) 20000 v H1975+HC€3827 scDblFinder." F1000Research 1
2 0 (2021).
o
0
20000 30000 40000 50000 60000

Sum of median library sizes



Doublets

 Two major types of doublets
 Homotypic doublets: formed by cells of the same “type”
* Transcriptomic profile looks similar to a singlet
* Hard to identify but also not that harmful for most data analysis purposes

* Heterotypic doublets: formed by cells of distinct transcriptional states
* Possible to identify due to their distinct gene expression profile

* Experimental approaches to identify doublets
* Very few false positives, but requires special experimental design (not available for
most experiments)
* Example techniques:
e species mixture: only works for experiments with multiple species
 demuxlet (Kang et. al. Nature Biotech 2018): use SNP, works for experiments
involving multiple individuals

 Computational approaches: identify doublets solely based on count matrix



SCU blet (Wolock et. al. Cell Systems, 2019)

 Coreidea:
e Simulate doublet by combing random pairs of cells
* Remove cells if they are similar to the simulated doublets
* Do not rely on library size at all

e Simulate pseudo-doublets:
* the counts for gene g in doublet { with parentcellsaandbisY, =Y, +Y

* KNN classifier to identify cells similar to the pseudo-doublets
* Merge observe cells and pseudo-doublets and preprocess the merged data:
Normalization, identify highly variable genes, scaling, PCA (more details in Lecture 3)
* Find k nearest neighbors of each cell using Euclidean distance (by default)
* g;: (slightly adjusted) proportion of pseudo-doublets in k nearest neighbors of cell i

_ ka(i)+1
ql - kadj+2

* Remove acellif g; > ¢y where ¢ is some threshold
* Inthe paper, they defined some Bayesian likelihood L; which is monotone increasing in g;



SCU blet (Wolock et. al. Cell Systems, 2019)

* Two key tuning parameters: k and ¢,
* k:they used an adjusted k: k,4 = round(k-(1+r)) where k = round(0.5Vnumber of cells) and r>2

(they found this formula empirically)

* (o The distribution of g; is empirically bimodal and they define ¢, as valley between two

modes
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An example

A Kang et al., 2018 B
8 individuals
/ N
Pool PEMCs
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scRNA-seq
Demultiplex Scrublet
Identify ground l
truth doublets  —— Compare
(mixed genotypes)
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DOU bletFl nder (McGinnis et. al. Cell Systems, 2019)

Same idea as Scublet
* 25% pseudo-doublets in the merged data

(1) Simulate Doublets (2) Dimensionality Reduction  (3) Doublet Identification
Droplet S ol o
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 Different ways to choose tuning parameters: k and ¢,

* k: choose k to maximize the bimodality coefficient of the distribution of g;
* Bimodality coefficient (formula from SAS)

2
= |
BC = Liis ; y skewness,
3(”;1) K kurtosis
(n—2)(n—3)

Not very ideal, so they used a modified version
* (q: a pre-given proportion of doublets need to be detected

DoubletFinder performs slightly better than Scublet in a benchmarking study (Xi and Li, Cell Systems 2021)



Ambient RNA

Lo o YT Ambient ~
In Droplet-based scRNA-seq platforms, a droplet can @ | A ~¥
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Ambient RNA also brings contamination to droplets that
contain cells

Experiment
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Ratio of contaminated RNA on average can be low (
~2%, less than 10%), but the contamination rate can
vary greatly across cells
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Why may we separate ambient RNA from mRNAs in the
cell? - empty droplets serve as negative controls

0.00 =

3.0 3.5 4.0 4.5 5.0

log10(#UMIs)



E m ptyD O pS (Lun et. al. Genome Biology, 2019)

Typically, we can identify droplets with no cells by the library size (library size too small)

This paper argued that such method discards small cells with low RNA content
Goal: rescue true cells with small library size

This paper only detect empty droplets, it does not correct for ambient RNA in droplets with cells

Core idea: find empty droplets use both the library size and gene expression profile

* Learn aninitial ambient profile
* Estimate empty droplet gene expression distribution

 Compute a p-value for each barcode to test whether the barcode is not an empty droplet

* Keep barcodes as “cells” if they have small p-values or large enough library size



E m ptyD O pS (Lun et. al. Genome Biology, 2019)

e Estimate empty droplet gene expression distribution
* Select barcodes whose library sizes are less than T as an initial pool of empty droplets
* Assume that gene expressions in an empty droplet i follows
(Yy;, -+, Yg) ~Dirichlet_multinomial(l;, (agpy, ***, doPe))
[check Wikipedia for the definition]
* Py is obtained by some empirical Bayes estimate to avoid reaching 0

* g estimated by maximum likelihood estimation given an estimated p,

 Compute p-value to test whether a barcode is not an empty droplet
* Essentially test whether an observation comes from a known distribution
» Basically, you check if the observation b is at the tail of the density (likelihood in the paper)
* Monte Carlo calculation of tail probability
 Sample N new observations from the above estimated empty droplet distribution, get the
density L1p, ** Lnp
* Calculate p-value as proportion of L1y, -:* Ly, that are smaller than L, (density of b)

e Barcode selection Conventional method
* BH correction of p-values and select a barcode if library size [; > U where U is a knee point



Total count

Some results

Monocyte gene expression
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SOU pX (Young et. al. GigaScience, 2020)

e Correct for ambient RNA confounding in cells

* Coreidea:
* Estimate ambient RNA gene expression profile from empty droplet (similar to EmptyDrops)

1. Determine the expression profile of contamination
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Droplet Number

e Use marker genes to determine proportion of contamination in each cell
* Remove the estimated ambient RNA count for each gene from the observed counts



SOU pX (Young et. al. GigaScience, 2020)

* Use marker genes to determine proportion of contamination in each cell
ch = My + Ogy¢
* 0gc = lcpchby: pe contamination rate in each cell
* “Negative control” genes
Assume that the marker genes for one cell cluster has zero expression in other cells
* If gene gis a negative control for the cell, then my. = 0 and Y, /(l:by) = p,
* Estimate p. as the mode of the gene-specific estimated rates

2. Estimate or set the global contamination rate

2.1 Marker genes for each cluster identified 2.2 Set contamination to most common estimate

LRRC26
CLEC4C
sCcT

Accurate estimates cluster
around true contamination rate

- i y Keep only highly ’ \
HES4 N i specific genes I Inaccurate estimates have
CDKN1C NS > no preferred value

FCGR3A (A Estimate contamination
independentely for each
gene (Figure S1)
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Count matrix

m,_ genes

Low-quality cell filtering i g
l bead
* Remove low-quality cells j‘;j L |
 Mitochondria also have DNA and can transcribe m bt
X Totalcounts & Oim ~ [ ]

into RNA Mitochondria
* Mitochondrial mMRNA also have poly-A tail that are
captured in scRNA-seq
* High expression levels of mitochondrial genes can
be an indicator of lysing cells

Doublet detection

Mitochondrial DNA Doublet

percent.mt

* Remove cells that have a high proportion of

reads from mitochondrial genes (default 5%) z
* Maybe better to use 10% for human cells ) Ez;r‘-**,
(Osorio and Cai, Bioinformatic 2021) ®

droplet .

| 5

Mus musculus 4 H—
Homo sapiens = %w 0 [HeumOS et. al.,

0.00 0.05 0.10 0.15 & Nature reviews

\dentity genetics 2023]
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