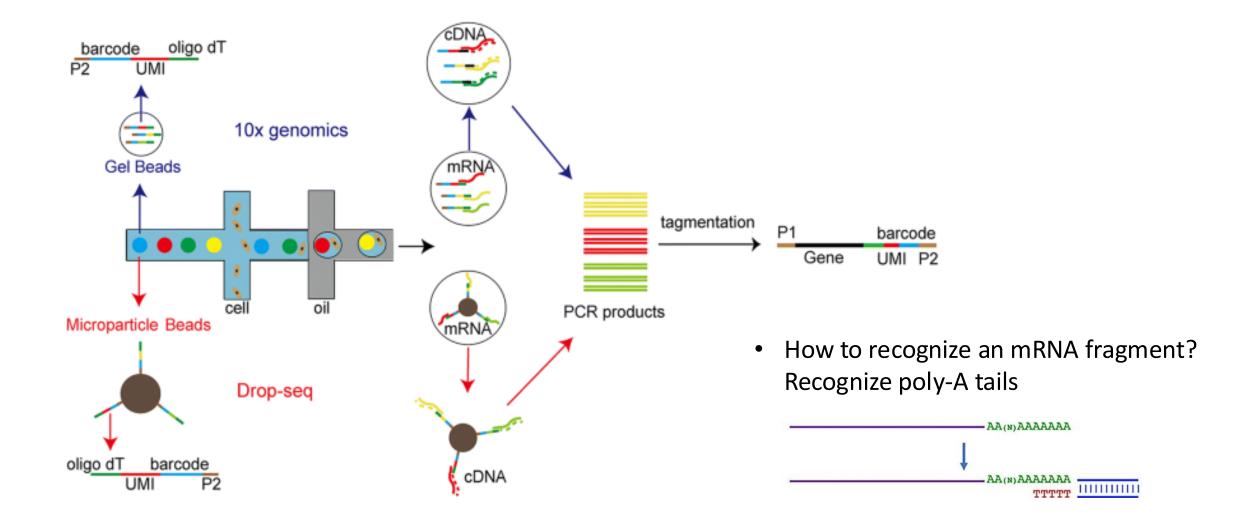
Lecture 2 scRNA-seq technique and count matrix QC

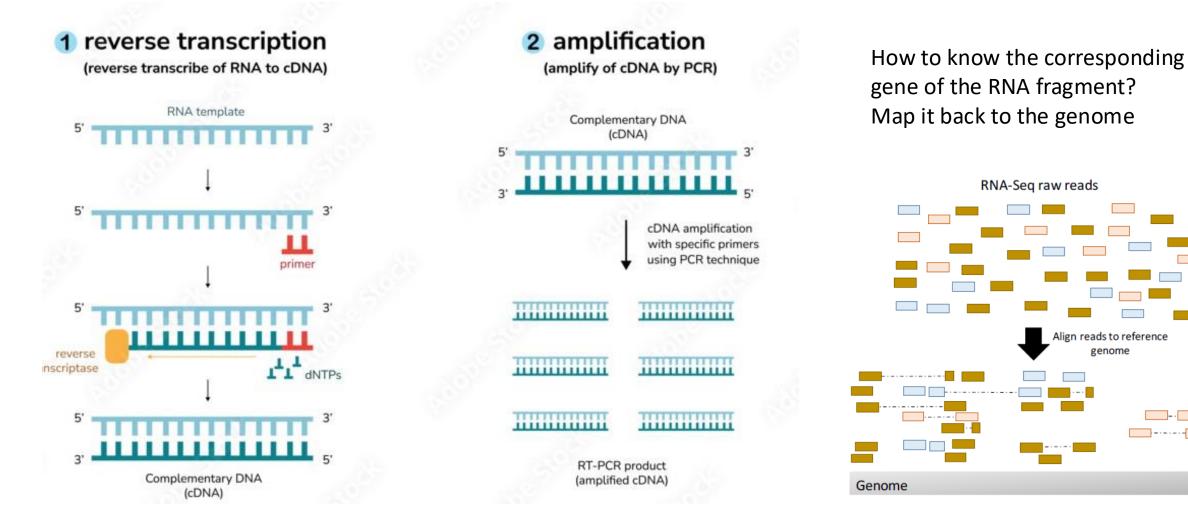
Outline

- Measurement error in scRNA-seq experiments
- Quality control of count matrix
 - Doublet removal
 - Ambient RNA correction
 - Remove low-quality cells

RNA sequencing: reverse transcription, amplification and sequencing



RNA sequencing: reverse transcription, amplification and sequencing



Make mRNA fragments more stable

Increase the number of materials to sequence

- -

Cell barcode for demultiplexing

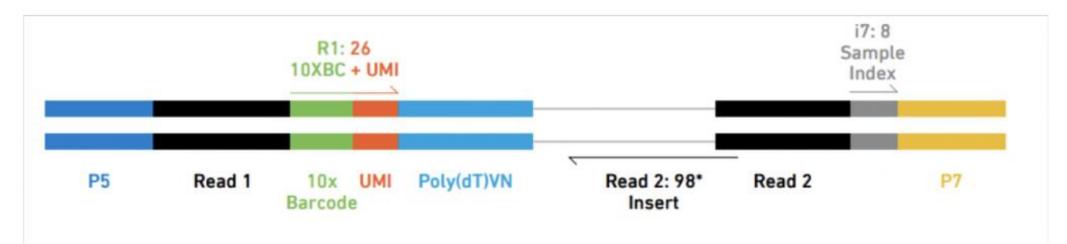
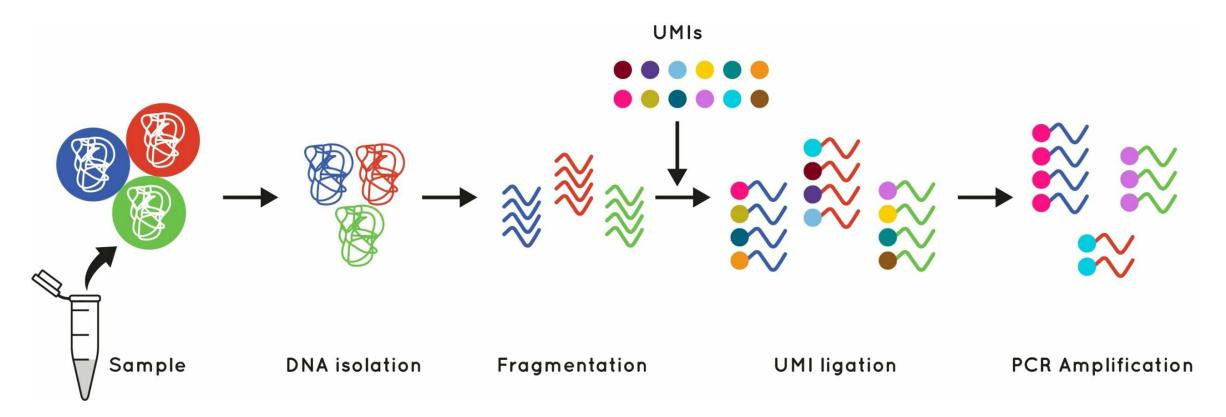


Fig. 2. Schematic of a fragment from a final Chromium™ Single Cell 3' v2 library. *Can be adjusted.

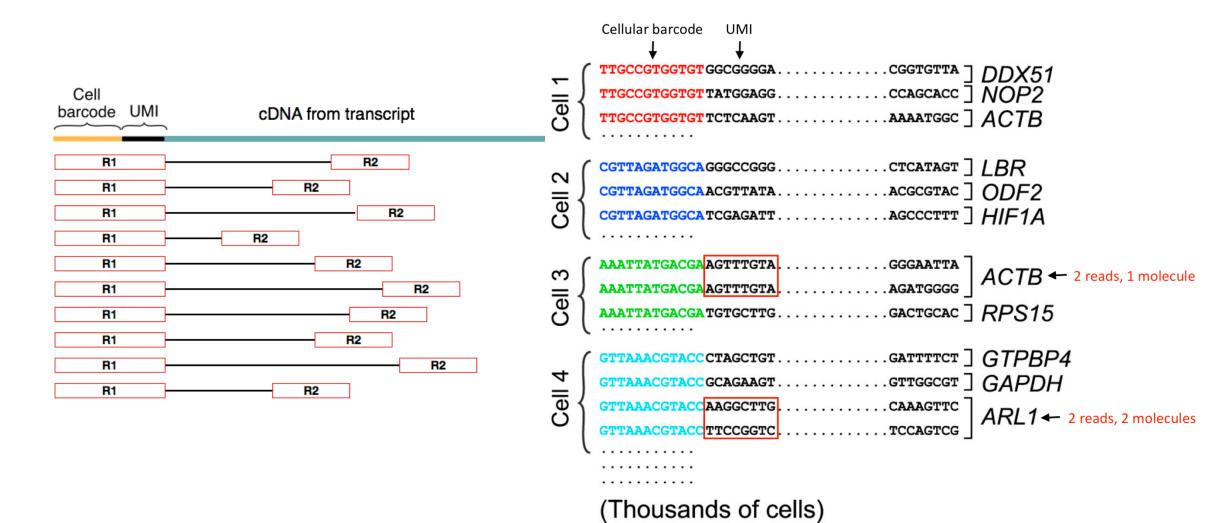
- cell barcode: associate cDNAs to a specific cell
- UMIs: label specific cDNA molecules to avoid amplification bias

Unique molecular identifier (UMI)



• each initial input cDNA fragment has its own unique tag

Obtain count matrix from reads



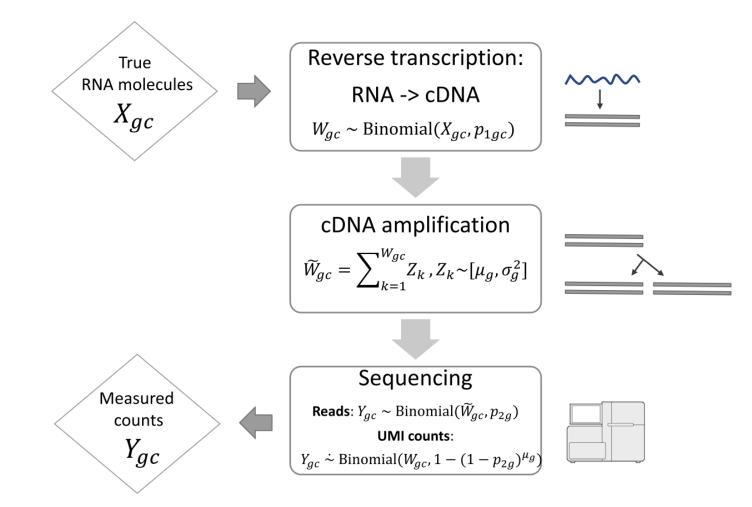
https://data-science-sequencing.github.io/Win2018/lectures/lecture16/

Gene expression count matrix

	Cell1	Cell2	 CellN
Gene1	3	2	13
Gene2	2	3	1
Gene3	1	14	18
	•		
	.		
	.		
GeneM	25	0	0

- Understand the cell population
- Characterize each cell
- Understand how gene expressions change across cells and gene-gene relationships
- Next class: QC to improve the quality of this matrix, understand noise and signals in the matrix

Propagation of measurement error



- A cell *c*, a gene *g*
- For UMI counts, roughly Y_{gc} ~Binomial(X_{gc}, α_{gc})
- For non-UMI reads:
 - $Y_{gc} = 0$ if $W_{gc} = 0$
 - Y_{gc} can be large if W_{gc} due to amplification
- Most of scRNA-seq data nowadays use UMI

library size

• For UMI counts, roughly

 $Y_{gc} \sim \text{Binomial}(X_{gc}, \alpha_{gc})$

where α_{gc} is the cell-gene-specific efficiency

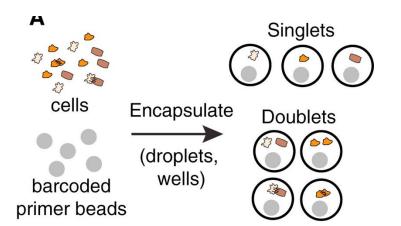
- Assume that $\alpha_{gc} \approx \alpha_c \gamma_g$ where α_c is cell-specific efficiency and γ_g is a gene-specific bias
- Researchers have observed that α_c can vary greatly across cells, but it is typically unidentifiable (will talk more in later slides)
- Library size of a cell: total total sum of UMI counts across all measured genes in a cell

$$I_c = \sum_g Y_{gc}$$

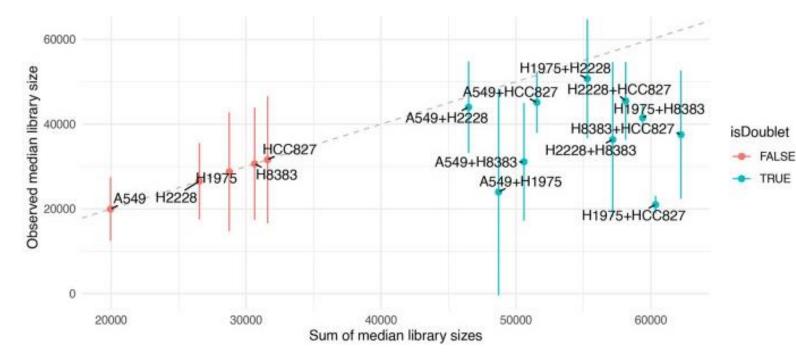
- Cells with large library size
 - Large cells containing many mRNAs (like neurons), high-quality cells where mRNAs are efficiently captured, doublets
- Cells with small library size
 - Small cells containing few mRNAs, low-quality cells, empty droplets
- Library size normalization: Y_{gc} is not comparable across cells, compare relative proportion Y_{gc}/l_c across cells

Doublets

- It is always possible that two (or more) cells share the same barcode
 - Common to have 10% 20% doublets in scRNA-seq experiments
 - More cells \rightarrow higher proportion of doublets



• Doublets or multiplets may have relatively large library size, but removing them simply based on library size is not efficient



Germain, Pierre-Luc, et al. "Doublet identification in singlecell sequencing data using scDblFinder." *F1000Research* 1 0 (2021).

Doublets

- Two major types of doublets
 - Homotypic doublets: formed by cells of the same "type"
 - Transcriptomic profile looks similar to a singlet
 - Hard to identify but also not that harmful for most data analysis purposes
 - Heterotypic doublets: formed by cells of distinct transcriptional states
 - Possible to identify due to their distinct gene expression profile
- Experimental approaches to identify doublets
 - Very few false positives, but requires special experimental design (not available for most experiments)
 - Example techniques:
 - species mixture: only works for experiments with multiple species
 - demuxlet (Kang et. al. Nature Biotech 2018): use SNP, works for experiments involving multiple individuals
- Computational approaches: identify doublets solely based on count matrix

Scublet (Wolock et. al. Cell Systems, 2019)

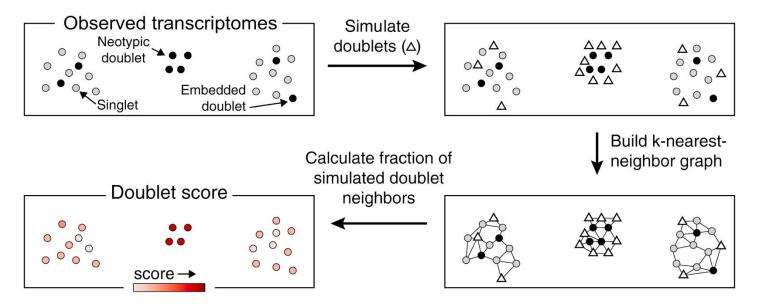
- Core idea:
 - Simulate doublet by combing random pairs of cells
 - Remove cells if they are similar to the simulated doublets
 - Do not rely on library size at all
- Simulate pseudo-doublets:
 - the counts for gene g in doublet i with parent cells a and b is $Y_{gi} = Y_{ga} + Y_{gb}$
- KNN classifier to identify cells similar to the pseudo-doublets
 - Merge observe cells and pseudo-doublets and preprocess the merged data: Normalization, identify highly variable genes, scaling, PCA (more details in Lecture 3)
 - Find k nearest neighbors of each cell using Euclidean distance (by default)
 - q_i : (slightly adjusted) proportion of pseudo-doublets in k nearest neighbors of cell i

$$q_i = \frac{k_d(i)+1}{k_{adj}+2}$$

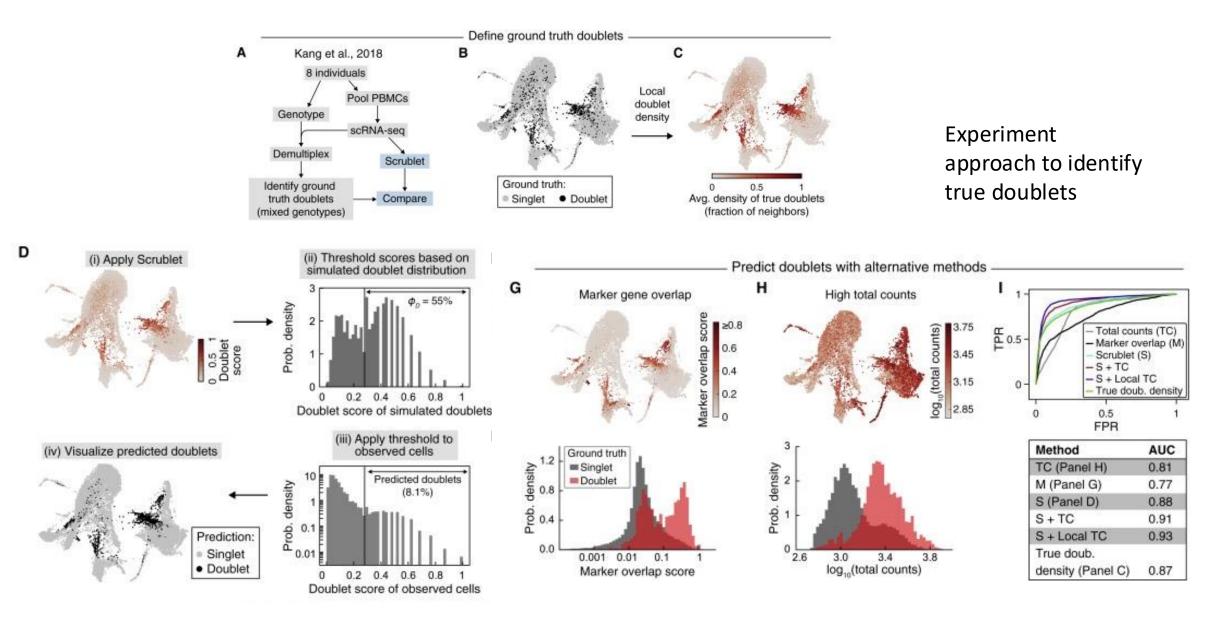
- Remove a cell if $q_i > c_0$ where c_0 is some threshold
 - In the paper, they defined some Bayesian likelihood L_i which is monotone increasing in q_i

Scublet (Wolock et. al. Cell Systems, 2019)

- Two key tuning parameters: k and c_0
 - k: they used an adjusted k: k_{adj} = round(k·(1+r)) where k = round(0.5√number of cells) and r≥2 (they found this formula empirically)
 - c_0 The distribution of q_i is empirically bimodal and they define c_0 as valley between two modes

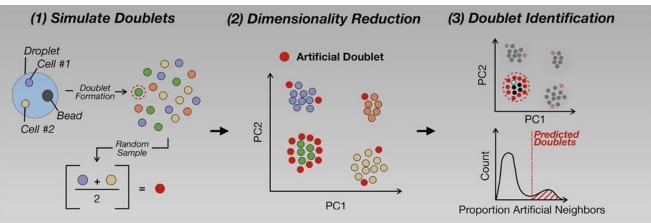


An example



DoubletFinder (McGinnis et. al. Cell Systems, 2019)

- Same idea as Scublet
 - 25% pseudo-doublets in the merged data



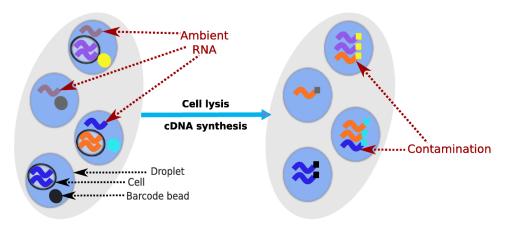
- Different ways to choose tuning parameters: k and c_0
 - k: choose k to maximize the bimodality coefficient of the distribution of q_i
 - Bimodality coefficient (formula from SAS)

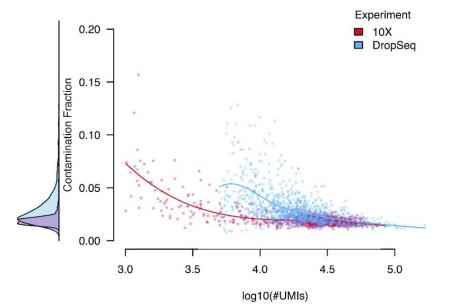
$$BC=rac{\gamma^2+1}{\kappa+rac{3(n-1)^2}{(n-2)(n-3)}}$$
 γ skewness, κ kurtosis

- Not very ideal, so they used a modified version
- c_0 : a pre-given proportion of doublets need to be detected
- DoubletFinder performs slightly better than Scublet in a benchmarking study (Xi and Li, Cell Systems 2021)

Ambient RNA

- In Droplet-based scRNA-seq platforms, a droplet can contain isolated RNAs even if it does not contain a cell
- Ambient RNA: pool of mRNA molecules that have been released in the cell suspension
- Ambient RNA also brings contamination to droplets that contain cells
- Ratio of contaminated RNA on average can be low (~2%, less than 10%), but the contamination rate can vary greatly across cells
- Why may we separate ambient RNA from mRNAs in the cell? → empty droplets serve as negative controls





EmptyDrops (Lun et. al. Genome Biology, 2019)

- Typically, we can identify droplets with no cells by the library size (library size too small)
- This paper argued that such method discards small cells with low RNA content
- Goal: rescue true cells with small library size
- This paper only detect empty droplets, it does not correct for ambient RNA in droplets with cells
- Core idea: find empty droplets use both the library size and gene expression profile
 - Learn an initial ambient profile
 - Estimate empty droplet gene expression distribution
 - Compute a p-value for each barcode to test whether the barcode is not an empty droplet
 - Keep barcodes as "cells" if they have small p-values or large enough library size

EmptyDrops (Lun et. al. Genome Biology, 2019)

- Estimate empty droplet gene expression distribution
 - Select barcodes whose library sizes are less than *T* as an initial pool of empty droplets
 - Assume that gene expressions in an empty droplet *i* follows

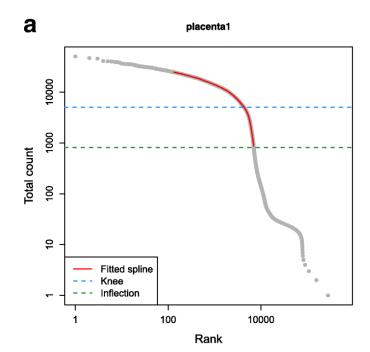
 $(Y_{1i}, \dots, Y_{Gi}) \sim \text{Dirichlet}_multinomial}(l_i, (\alpha_0 \tilde{p}_1, \dots, \alpha_0 \tilde{p}_G))$ [check Wikipedia for the definition]

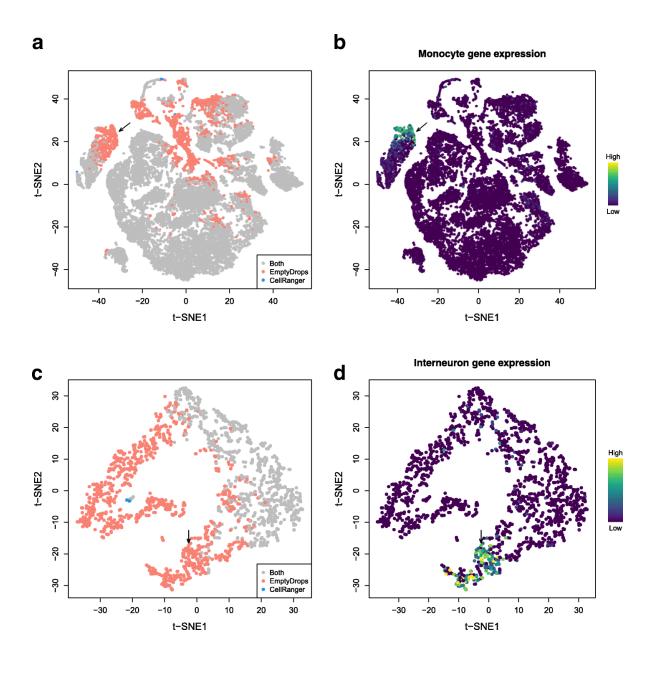
- \tilde{p}_g is obtained by some empirical Bayes estimate to avoid reaching 0
- α_0 estimated by maximum likelihood estimation given an estimated \tilde{p}_g
- Compute p-value to test whether a barcode is not an empty droplet
 - Essentially test whether an observation comes from a known distribution
 - Basically, you check if the observation b is at the tail of the density (likelihood in the paper)
 - Monte Carlo calculation of tail probability
 - Sample N new observations from the above estimated empty droplet distribution, get the density L_{1b} , $\cdots L_{Nb}$
 - Calculate p-value as proportion of L_{1b} , $\cdots L_{Nb}$ that are smaller than L_b (density of b)
- Barcode selection

Conventional method

• BH correction of p-values and select a barcode if library size $l_i > U$ where U is a knee point

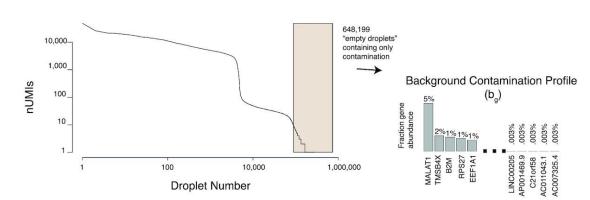
Some results





SoupX (Young et. al. GigaScience, 2020)

- Correct for ambient RNA confounding in cells
- Core idea:
 - Estimate ambient RNA gene expression profile from empty droplet (similar to EmptyDrops)



1. Determine the expression profile of contamination

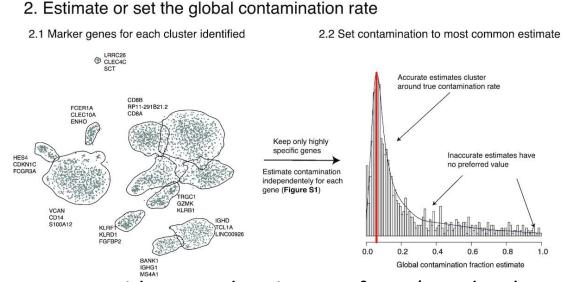
- Use marker genes to determine proportion of contamination in each cell
- Remove the estimated ambient RNA count for each gene from the observed counts

SoupX (Young et. al. GigaScience, 2020)

• Use marker genes to determine proportion of contamination in each cell

$$Y_{gc} = m_{gc} + o_{gc}$$

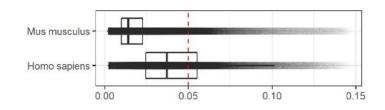
- $o_{gc} = l_c \rho_c b_g$: ρ_c contamination rate in each cell
- "Negative control" genes Assume that the marker genes for one cell cluster has zero expression in other cells
- If gene g is a negative control for the cell, then $m_{gc} = 0$ and $Y_{gc}/(l_c b_g) \approx \rho_c$
- Estimate ρ_c as the mode of the gene-specific estimated rates

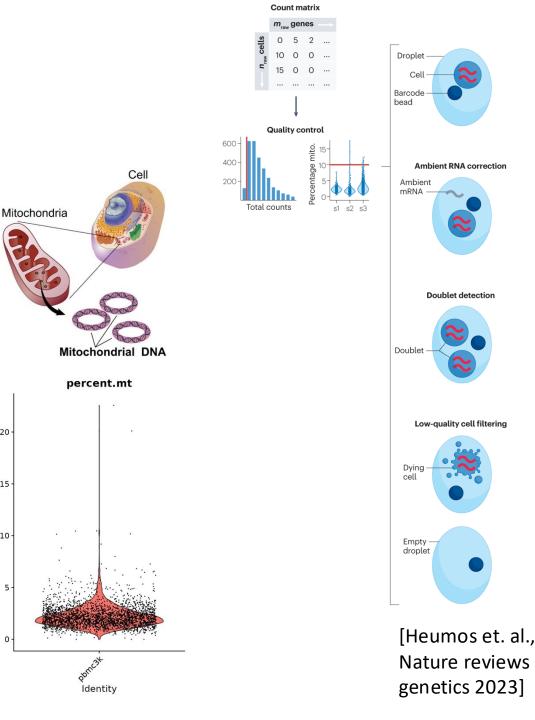


• Some adjustments to provide a good estimate of o_{gc} (need to be an integer, no greater than Y_{gc})

Low-quality cell filtering

- Remove low-quality cells ٠
 - Mitochondria also have DNA and can transcribe ٠ into RNA
 - Mitochondrial mRNA also have poly-A tail that are • captured in scRNA-seq
 - High expression levels of mitochondrial genes can be an indicator of lysing cells
 - Remove cells that have a high proportion of • reads from mitochondrial genes (default 5%)
 - Maybe better to use 10% for human cells (Osorio and Cai, Bioinformatic 2021)





20

15

10

Related papers

- Wolock, S. L., Lopez, R., & Klein, A. M. (2019). Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell systems, 8(4), 281-291.
- McGinnis, C. S., Murrow, L. M., & Gartner, Z. J. (2019). DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell systems, 8(4), 329-337.
- Lun, A. T., Riesenfeld, S., Andrews, T., Dao, T. P., Gomes, T., Participants in the 1st Human Cell Atlas Jamboree, & Marioni, J. C. (2019). EmptyDrops: distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing data. Genome biology, 20, 1-9.
- Young, M. D., & Behjati, S. (2020). SoupX removes ambient RNA contamination from droplet-based single-cell RNA sequencing data. Gigascience, 9(12), giaa151.
- Osorio, D., & Cai, J. J. (2021). Systematic determination of the mitochondrial proportion in human and mice tissues for single-cell RNA-sequencing data quality control. Bioinformatics, 37(7), 963-967.
- Heumos, L., Schaar, A. C., Lance, C., Litinetskaya, A., Drost, F., Zappia, L., ... & Theis, F. J. (2023). Best practices for single-cell analysis across modalities. Nature Reviews Genetics, 24(8), 550-572.