
Lecture 2 
scRNA-seq technique and count 

matrix QC



Outline

• Measurement error in scRNA-seq experiments

• Quality control of count matrix
• Doublet removal 

• Ambient RNA correction

• Remove low-quality cells



RNA sequencing: reverse transcription, 
amplification and sequencing

• How to recognize an mRNA fragment? 
Recognize poly-A tails



RNA sequencing: reverse transcription, 
amplification and sequencing

How to know the corresponding 
gene of the RNA fragment? 
Map it back to the genome 

Make mRNA fragments more stable Increase the number of materials to sequence



Cell barcode for demultiplexing

• cell barcode: associate cDNAs to a specific cell
• UMIs: label specific cDNA molecules to avoid amplification bias



Unique molecular identifier (UMI)

• each initial input cDNA fragment has its own unique tag



Obtain count matrix from reads

https://data-science-sequencing.github.io/Win2018/lectures/lecture16/



Gene expression count matrix

• Understand the cell population
• Characterize each cell
• Understand how gene 

expressions change across cells 
and gene-gene relationships

• Next class: QC to improve the 
quality of this matrix, 
understand noise and signals in 
the matrix



Propagation of measurement error

• A cell 𝑐, a gene 𝑔

• For UMI counts, roughly
𝑌𝑔𝑐~Binomial(𝑋𝑔𝑐, 𝛼𝑔𝑐)

• For non-UMI reads:
• 𝑌𝑔𝑐 = 0 if 𝑊𝑔𝑐 = 0

• 𝑌𝑔𝑐 can be large if 𝑊𝑔𝑐 

due to amplification

• Most of scRNA-seq data 
nowadays use UMI



library size
• For UMI counts, roughly

𝑌𝑔𝑐~Binomial 𝑋𝑔𝑐, 𝛼𝑔𝑐

where 𝛼𝑔𝑐 is the cell-gene-specific efficiency

• Assume that 𝛼𝑔𝑐 ≈ 𝛼𝑐𝛾𝑔 where 𝛼𝑐 is cell-specific efficiency and 𝛾𝑔 is a gene-specific bias

• Researchers have observed that 𝛼𝑐 can vary greatly across cells, but it is typically 
unidentifiable (will talk more in later slides)

• Library size of a cell: total total sum of UMI counts across all measured genes in a cell

𝑙𝑐 = ෍
𝑔

𝑌𝑔𝑐

• Cells with large library size
• Large cells containing many mRNAs (like neurons), high-quality cells where mRNAs are 

efficiently captured, doublets
• Cells with small library size

• Small cells containing few mRNAs, low-quality cells, empty droplets

• Library size normalization: 𝑌𝑔𝑐 is not comparable across cells, compare relative proportion 

𝑌𝑔𝑐/𝑙𝑐 across cells



Doublets
• It is always possible that two (or more) cells 

share the same barcode
• Common to have 10% - 20% doublets in 

scRNA-seq experiments
• More cells → higher proportion of doublets

• Doublets or multiplets may have relatively large library size, but removing them simply 
based on library size is not efficient

Germain, Pierre-Luc, et al. 
"Doublet identification in single-

cell sequencing data using 

scDblFinder." F1000Research 1
0 (2021).



Doublets
• Two major types of doublets

• Homotypic doublets: formed by cells of the same ”type”
• Transcriptomic profile looks similar to a singlet
• Hard to identify but also not that harmful for most data analysis purposes

• Heterotypic doublets: formed by cells of distinct transcriptional states
• Possible to identify due to their distinct gene expression profile

• Experimental approaches to identify doublets
• Very few false positives, but requires special experimental design (not available for 

most experiments)
• Example techniques: 

• species mixture: only works for experiments with multiple species
• demuxlet (Kang et. al. Nature Biotech 2018): use SNP, works for experiments 

involving multiple individuals

• Computational approaches: identify doublets solely based on count matrix



Scublet (Wolock et. al. Cell Systems, 2019)

• Core idea:
• Simulate doublet by combing random pairs of cells
• Remove cells if they are similar to the simulated doublets
• Do not rely on library size at all

• Simulate pseudo-doublets:
• the counts for gene 𝑔 in doublet 𝑖 with parent cells 𝑎 and 𝑏 is 𝑌𝑔𝑖 = 𝑌𝑔𝑎 + 𝑌𝑔𝑏

• KNN classifier to identify cells similar to the pseudo-doublets
• Merge observe cells and pseudo-doublets and preprocess the merged data:

Normalization, identify highly variable genes, scaling, PCA (more details in Lecture 3)
• Find 𝑘 nearest neighbors of each cell using Euclidean distance (by default)
• 𝑞𝑖: (slightly adjusted) proportion of pseudo-doublets in k nearest neighbors of cell 𝑖

• Remove a cell if 𝑞𝑖 > 𝑐0 where 𝑐0 is some threshold
• In the paper, they defined some Bayesian likelihood 𝐿𝑖 which is monotone increasing in 𝑞𝑖



Scublet (Wolock et. al. Cell Systems, 2019)

• Two key tuning parameters: 𝑘 and 𝑐0

•  𝑘: they used an adjusted 𝑘: kadj = round(k⋅(1+r)) where 𝑘 = round(0.5 number of cells) and r≥2
(they found this formula empirically)

• 𝑐0 The distribution of 𝑞𝑖 is empirically bimodal and they define 𝑐0 as valley between two 
modes



An example

Experiment 
approach to identify 
true doublets



DoubletFinder (McGinnis et. al. Cell Systems, 2019)

• Same idea as Scublet
• 25% pseudo-doublets in the merged data

• Different ways to choose tuning parameters: 𝑘 and 𝑐0

• 𝑘: choose 𝑘 to maximize the bimodality coefficient of the distribution of 𝑞𝑖 
• Bimodality coefficient (formula from SAS)

• Not very ideal, so they used a modified version
• 𝑐0: a pre-given proportion of doublets need to be detected

• DoubletFinder performs slightly better than Scublet in a benchmarking study (Xi and Li, Cell Systems 2021)

𝛾 skewness, 
𝜅 kurtosis



Ambient RNA

• In Droplet-based scRNA-seq platforms, a droplet can 
contain isolated RNAs even if it does not contain a cell

• Ambient RNA: pool of mRNA molecules that have been 
released in the cell suspension

• Ambient RNA also brings contamination to droplets that 
contain cells

• Ratio of contaminated RNA on average can be low ( 
~2%, less than 10%), but the contamination rate can 
vary greatly across cells 

• Why may we separate ambient RNA from mRNAs in the 
cell?  → empty droplets serve as negative controls



EmptyDrops (Lun et. al. Genome Biology, 2019)

• Typically, we can identify droplets with no cells by the library size (library size too small)

• This paper argued that such method discards small cells with low RNA content
• Goal: rescue true cells with small library size

• This paper only detect empty droplets, it does not correct for ambient RNA in droplets with cells

• Core idea: find empty droplets use both the library size and gene expression profile
 

• Learn an initial ambient profile
• Estimate empty droplet gene expression distribution

• Compute a p-value for each barcode to test whether the barcode is not an empty droplet

• Keep barcodes as “cells” if they have small p-values or large enough library size



EmptyDrops (Lun et. al. Genome Biology, 2019)

• Estimate empty droplet gene expression distribution
• Select barcodes whose library sizes are less than 𝑇 as an initial pool of empty droplets
• Assume that gene expressions in an empty droplet 𝑖 follows

𝑌1𝑖 , ⋯ , 𝑌𝐺𝑖 ~Dirichlet_multinomial 𝑙𝑖, (𝛼0 ෤𝑝1, ⋯ , 𝛼0 ෤𝑝𝐺)
      [check Wikipedia for the definition]
• ෤𝑝𝑔 is obtained by some empirical Bayes estimate to avoid reaching 0

• 𝛼0 estimated by maximum likelihood estimation given an estimated ෤𝑝𝑔

• Compute p-value to test whether a barcode is not an empty droplet
• Essentially test whether an observation comes from a known distribution
• Basically, you check if the observation 𝑏 is at the tail of the density (likelihood in the paper)
• Monte Carlo calculation of tail probability

• Sample 𝑁 new observations from the above estimated empty droplet distribution, get the 
density 𝐿1𝑏 , ⋯ 𝐿𝑁𝑏

• Calculate p-value as proportion of 𝐿1𝑏 , ⋯ 𝐿𝑁𝑏 that are smaller than 𝐿𝑏 (density of 𝑏)

• Barcode selection
• BH correction of p-values and select a barcode if library size 𝑙𝑖 > 𝑈 where U is a knee point

Conventional method



Some results



SoupX (Young et. al. GigaScience, 2020)

• Correct for ambient RNA confounding in cells

• Core idea: 
• Estimate ambient RNA gene expression profile from empty droplet (similar to EmptyDrops)

• Use marker genes to determine proportion of contamination in each cell
• Remove the estimated ambient RNA count for each gene from the observed counts



SoupX (Young et. al. GigaScience, 2020)

• Use marker genes to determine proportion of contamination in each cell
𝑌𝑔𝑐 = 𝑚𝑔𝑐 + 𝑜𝑔𝑐

• 𝑜𝑔𝑐 = 𝑙𝑐𝜌𝑐𝑏𝑔: 𝜌𝑐 contamination rate in each cell

• “Negative control” genes
Assume that the marker genes for one cell cluster has zero expression in other cells

• If gene g is a negative control for the cell, then 𝑚𝑔𝑐 = 0 and  𝑌𝑔𝑐/(𝑙𝑐𝑏𝑔) ≈ 𝜌𝑐

• Estimate 𝜌𝑐 as the mode of the gene-specific estimated rates

• Some adjustments to provide a good estimate of 𝑜𝑔𝑐 (need to be an integer, no greater than 𝑌𝑔𝑐)



Low-quality cell filtering

[Heumos et. al., 
Nature reviews 
genetics 2023]

• Remove low-quality cells
• Mitochondria also have DNA and can transcribe 

into RNA
• Mitochondrial mRNA also have poly-A tail that are 

captured in scRNA-seq
• High expression levels of mitochondrial genes can 

be an indicator of lysing cells

• Remove cells that have a high proportion of
reads from mitochondrial genes (default 5%) 
• Maybe better to use 10% for human cells 

(Osorio and Cai, Bioinformatic 2021)
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