Lecture 3 scRNA-seq noise and signal distributions

Outline

- Modeling technical noise distributions in scRNA-seq count matrix
 - ERCC spike-ins
- Modeling biological variations of gene expressions across cells
 - Distribution deconvolution for scRNA-seq

scRNA-seq count matrix is very noisy

- Observed count matrix *Y* is typically extremely sparse
 - Dropout: zeros in the count matrix (a vague concept)
 - Two types of zeros
 - Biological zeros: true mRNA count is zero
 - Technical zeros: true mRNA count is not zero, but observed count is zero
- We will discuss the measurement error distributions and signal distributions (biological variations across cells / gene-gene dependence) separately
 - Why do we care about these?
 - Reasonable statistical / machine learning model to use in analyzing the data
 - How to simulate scRNA-seq data to benchmark different methods?

Measurement error distribution

- Both reverse transcription and sequencing can generate technical zeros, which can be theoretically explained by Binomial distributions Y_{gc} ~Binomial($X_{gc}, \alpha_c \gamma_g$)
- Due to low efficiency ($\alpha_c < 10\%$), roughly Y_{gc} ~Poisson($\alpha_c \gamma_g X_{gc}$)
- Sequencing depth: total number of reads per cell
 - Refer to p_{2g} : deeper sequencing depth, more reads sampled from the library
 - Roughly controllable by experimenters, depends on the budget

Noise distribution: zero inflation or not?

- Gaussian assumptions on the observed data (even after transformations) usually do not work well
 - scRNA-seq data is extremely sparse
- Because of the extreme sparsity of scRNA-seq data, many earlier papers have used a zero-inflated model: such as zero-inflated Poisson or zero-inflated negative binomial model for scRNA-seq data
 - A zero-inflated model have more parameters to fit, is it worth it?

biological variation + measurement error

ERCC spike-ins

- For UMI counts, Y_{gc} ~Poisson $(\alpha_c \gamma_g X_{gc})$ A Poisson distribution + cell-specific efficiency seems sufficient
- The above model is only a simplification, can we find empirical evidence?
 - Typically challenging to separate biological variations from measurement errors
 - Distribution of true gene expression X_{gc} can be complicated (will discuss later)
 - α_c is typically also unidentifiable
- ERCC spike-in 'gene' g (negative controls):

•
$$X_{gc} \stackrel{i.i.d}{\sim} \operatorname{Poisson}(\mu_g)$$

- Conventionally, researchers treat X_{gc} as constant across cells $Var(Y_{gc}) = 2\alpha_c \gamma_g \mu_g$
- Assume $\gamma_g = 1$, then α_c is identifiable

Noise distribution for UMI data is not zero-inflated

- Some empirical evidence using ERCC spike-ins
 - (Wang et. al. PNAS 2018):
 - Assuming the Poisson noise model Y_{gc} ~Poisson $(\alpha_c X_{gc})$, used a distribution deconvolution method to estimate the distribution of X_{gc} across cells for each ERCC spike-in gene

Noise distribution for UMI data is not zero-inflated

- Some empirical evidence using ERCC spike-ins
 - (Svensson, Nature Biotech, 2020):

Use Negative-Binomial distribution to model the ERCC spike-ins and $Y_{gc} \sim NB(\mu_g, \theta_g)$ check if the observed zero proportion match with the estimated values

Factors affecting the noise distribution

- Batch effect:
 - non-biological factors in an experiment cause changes in the data produced by the experiment
 - Common causes: laboratory conditions, Choice of reagent lot or batch, Personnel differences, Time of day when the experiment was conducted, instruments used to conduct the experiment
 - Long-standing issue for sequencing data
 - New challenge for single-cell sequencing data (more in later lectures)
 - Batch effects introduce both biases and over-dispersion to the noise distribution
 - With batch effects, the actual noise distribution may be more dispersed than a Poisson model
- Researchers have shown that zero-inflation noise model can still benefit non-UMI data

True biological variations

- Distribution of X_{gc} across cells can be really complicated
 - Diversity of cell types
 - many genes are unexpressed in a cell
 - cells of distinct types have different genes expressed
 - Transcriptional bursting

Jiang, Yuchao, Nancy R. Zhang, and Mingyao Li. "SCALE: modeling allele-specific gene expression by single-cell RNA sequencing." *Genome biology* 18 (2017): 1-15.

• For a given time interval, number of mRNAs for a gene in a cell follows Poisson-beta distribution (Kepler and Elston, Biophysical J, 2001)

 $Y \sim \text{Poisson}(sp), p \sim \text{Beta}(k_{on}, k_{off})$

• X_{gc} across cells in a homogenous cell population should also follow a similar distribution

Modeling true gene expression distribution

- True distribution of X_{gc} can be really complicated
 - It is also not identifiable from most scRNA-seq data (as we only know library size l_c instead of efficiency α_c)
 - It is only possible to model the gene expression proportion $p_{gc} = \frac{X_{gc}}{\sum_{a} X_{ac}}$
 - Without considering batch effects, we may assume Y_{gc} ~ Poisson $(l_c p_{gc})$

Point mass (no variation)PoissonAnalyticGammaNegative BinomialMASS ⁴¹ , edgeR ⁴² , DESeq2 ⁴³ , BASICS ⁴⁴ , SAVER ²⁰ Table 1 of Sarkar and Stephens, Nature Genetics, 2021Point-GammaEro-inflated Negative BinomialPSCL ⁴⁵ Table 1 of Sarkar and Stephens, Nature Genetics, 2021Unimodal (non- parametric)UnimodalAnis ^{24,46} TerretoricPoint-exponential familyFixibleDESCEND ⁴ TerretoricFully non-parametric ⁴⁷ FixibleAsingTerretoric	Expression model	Observation model	Method	Table 1 of Sarkar and Stephens, Nature Genetics, 2021
GammaNegative BinomialMASS ⁴¹ , edgeR ⁴² , DESeq2 ⁴³ , BASICS ⁴⁴ , SAVER ²⁰ Point-GammaZero-inflated Negative BinomialPSCL ⁴⁵ Table 1 of Sarkar and Stephens, Nature Genetics, 2021Unimodal (non- parametric)Unimodalashr ^{24,46} Fereira (Construction)Point-exponential familyFlexibleDESCEND ⁴ Fereira (Construction)Fully non-parametricFereira (Construction)ashrFereira (Construction)	Point mass (no variation)	Poisson	Analytic	
Point-GammaZero-inflated Negative BinomialPSCL45Stephens, Nature Genetics, 2021Unimodal (non- parametric)Unimodal (non- binomial)ashr24.46Stephens, Nature Genetics, 2021Point-exponential familyFlexibleDESCEND4LescenderFully non-parametric47Flexibleashr24.46Lescender	Gamma	Negative Binomial	MASS ^{<u>41</u>} , edgeR ^{<u>42</u>} , DESeq2 ^{<u>43</u>} , BASICS ^{<u>44</u>} , SAVER ^{<u>20</u>}	
Unimodal (non- parametric)Unimodalashr24,46Point-exponential familyFlexibleDESCEND4Fully non-parametric47Flexibleashr	Point-Gamma	Zero-inflated Negative Binomial	PSCL ⁴⁵	
Point-exponential familyFlexibleDESCEND ⁴ Fully non-parametric ⁴⁷ Flexibleashr	Unimodal (non- parametric)	Unimodal	ashr ^{24,46}	
Fully non-parametric ⁴⁷ Flexible ashr	Point-exponential family	Flexible	$DESCEND^{\underline{4}}$	
	Fully non-parametric ⁴⁷	Flexible	ashr	

• Dependence structure across genes

DSCEND (Wang et. al. PNAS 2018)

• Distribution deconvolution

$$X_{gc} \stackrel{i.i.d}{\sim} H_g \xrightarrow{\text{Technical noise}} Y_{gc} \stackrel{\text{Distribution Deconvolution}}{\xrightarrow{Y_{gc} | X_{gc}} \stackrel{\text{ind}}{\sim} \text{Poisson}(l_c X_{gc})} \widehat{H}_g \stackrel{?}{\approx} H_g$$

• Semi-parametric distributional assumption (G-modeling, Efron Biometrika 2016)

$$h_g(x) = \pi_g \delta_0 + (1 - \pi_g) \exp[Q(x)^T \alpha - g(\alpha)]$$

- Q(x) is non-parametric, and is estimated by cubic splines after discretizing the data
 - For $x \neq 0$, Assume that $x \in \boldsymbol{x} = (x_1, \cdots, x_m)$

$$\mathbb{P}\left[X=\boldsymbol{x}\right]=\exp\{Q^{T}\alpha-\phi(\alpha)\}$$

where Q is the 5-degree natural cubic spline matrix at \boldsymbol{x}

- Incorporate covariates in the distribution:
 - Incorporate covariates in both π_g and the non-zero part
 - Non-zero part: assume $X_{gc} = e^{U_c \beta} \tilde{X}_{gc}$ where $\tilde{X}_{gc} \sim H_g$
- Statistical inference: Taylor expansion on the estimating equation

Validation using FISH experiment

Photo courtesy of Anne Dodson and Professor Jasper Rine

Modeling distribution of observed counts

- Why do we want to separate the true gene expression variation from the noise distribution?
 - Researchers are interested in the proportion of true zeros
 - Identify changes in gene expression variations instead of in mean
- Sometimes we may just want to model the observed counts
 - Example: test for gene expression mean changes between two cell types
- Complexity in true gene expression can bring in both over-dispersion and zero-inflation in the observed count if we just use a Poisson model with cell-specific library size
 - A common approach is to use a Negative-Binomial distribution or zero-inflated NB distribution
 - (Kim et. al. Genome Biology 2020) showed that Poisson distribution is good enough to model Y_{gc} for a relatively homogenous cell population
 - (Saket and Satija, Genome Biology 2022) showed that Poisson distribution is not enough to model Y_{gc} for a relatively homogenous cell population if sequencing is not shallow and should use a Negative Binomial distribution
- A common approach is to use an autoencoder (latent factor model) to capture gene-gene dependence and cell population heterogeneity use NB likelihood to construct loss function

Related papers

- Wang, J., Huang, M., Torre, E., Dueck, H., Shaffer, S., Murray, J., ... & Zhang, N. R. (2018). Gene expression distribution deconvolution in single-cell RNA sequencing. Proceedings of the National Academy of Sciences, 115(28), E6437-E6446.
- Svensson, V. (2020). Droplet scRNA-seq is not zero-inflated. Nature Biotechnology, 38(2), 147-150.
- Sarkar, A., & Stephens, M. (2021). Separating measurement and expression models clarifies confusion in single-cell RNA sequencing analysis. Nature genetics, 53(6), 770-777.
- Kim, T. H., Zhou, X., & Chen, M. (2020). Demystifying "drop-outs" in single-cell UMI data. Genome biology, 21(1), 196.
- Choudhary, S., & Satija, R. (2022). Comparison and evaluation of statistical error models for scRNA-seq. Genome biology, 23(1), 27.