Lecture 3
scRNA-seq noise and signal
distributions




Outline

* Modeling technical noise distributions in scRNA-seq count matrix
* ERCC spike-ins

* Modeling biological variations of gene expressions across cells
 Distribution deconvolution for scRNA-seq



SCRNA-seq count matrix is very noisy
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* Observed count matrix Y is typically extremely sparse
* Dropout: zeros in the count matrix (a vague concept)
 Two types of zeros
* Biological zeros: true mRNA count is zero
* Technical zeros: true mRNA count is not zero, but observed count is zero
 We will discuss the measurement error distributions and signal distributions
(biological variations across cells / gene-gene dependence) separately
* Why do we care about these?
* Reasonable statistical / machine learning model to use in analyzing the data
 How to simulate scRNA-seq data to benchmark different methods?



Measurement error distribution

* Both reverse transcription and sequencing can

True Reverse transcription: _ )
RNA molecules . gl RNA -> cDNA A generate technical zeros, which can be
Xgc ——— theoretically explained by Binomial distributions

Wy ~ Binomial(Xy¢, p1ge)

Yyc~Binomial(X,¢, acyy)

cDNA amplification | ____ * Due to low efficiency (a, < 10%), roughly
e = kaizk,zr[ug,a;] ___O Ygc~Poisson(acyyX4c)
* Sequencing depth: total number of reads per cell
cured Sequencing | * Refer to p,4: deeper sequencing depth, more
counts Q@ | e Brona by {; j reads sampled from the library
Ygc Yy < Binomial(Wye, 1 — (1 - py )] Lo * Roughly controllable by experimenters,

depends on the budget



Noise distribution: zero inflation or not?

* Gaussian assumptions on the observed data (even after transformations) usually do not work well
* scRNA-seq data is extremely sparse

* Because of the extreme sparsity of scRNA-seq data, many earlier papers have used a zero-inflated
model: such as zero-inflated Poisson or zero-inflated negative binomial model for scRNA-seq data

* A zero-inflated model have more parameters to fit, is it worth it?
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ERCC spike-ins

* For UMI counts, YgC~Poisson(aCnggc)
A Poisson distribution + cell-specific efficiency seems sufficient

 The above model is only a simplification, can we find empirical evidence?
* Typically challenging to separate biological variations from measurement errors
* Distribution of true gene expression X, can be complicated (will discuss later)
* «a, is typically also unidentifiable

* ERCC spike-in ‘gene’ g (negative controls):
Spike-in

genes

N
N
NN

\

Mixtures with known
abundance ratios

iid Known
Xgc ~ Poisson(ug)

Conventionally, researchers treat X,
as constant across cells

Var(ch) = 20cYglg

Assume y, = 1, then a isidentifiable
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Noise distribution for UMI data is not zero-inflated

 Some empirical evidence using ERCC spike-ins
* (Wang et. al. PNAS 2018):

Assuming the Poisson noise model YgC~Poisson(acch), used a distribution deconvolution
method to estimate the distribution of X, across cells for each ERCC spike-in gene
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Noise distribution for UMI data is not zero-inflated

 Some empirical evidence using ERCC spike-ins
e (Svensson, Nature Biotech, 2020):

Use Negative-Binomial distribution to model the ERCC spike-ins and YgC~NB(ug, Hg)
check if the observed zero proportion match with the estimated values
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Solution (K562 endogenous RNA and ERCC spike-ins)
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Factors affecting the noise distribution

e Batch effect:

non-biological factors in an experiment cause changes in the data produced by the
experiment

Common causes: laboratory conditions, Choice of reagent lot or batch, Personnel differences,
Time of day when the experiment was conducted, instruments used to conduct the
experiment

Long-standing issue for sequencing data

New challenge for single-cell sequencing data (more in later lectures)

Batch effects introduce both biases and over-dispersion to the noise distribution

With batch effects, the actual noise distribution may be more dispersed than a Poisson model

e Researchers have shown that zero-inflation noise model can still benefit non-UMI
data



True biological variations

* Distribution of X, across cells can be really complicated

* Diversity of cell types
* many genes are unexpressed in a cell
» cells of distinct types have different genes expressed

. Transcriptional bursting

: S ! ! ' Time ! ! !
\ 4
2 4"&" /\-‘JV * For a given time interval, number of mRNAs for a gene in a cell follows
Burst frequency: k_ Poisson-beta distribution (Kepler and Elston, Biophysical J, 2001)

~ Burstsize: sk, Y ~Poisson(sp), p~Beta(kon, kosr)
e X

gc across cellsin a homogenous cell population should also follow a

Jiang, Yuchao, Nancy R. Zhang, and Mingyao similar distribution
Li. "SCALE: modeling allele-specific gene

expression by single-cell RNA

sequencing.” Genome biology 18 (2017): 1-15.



Modeling true gene expression distribution

* True distribution of X, can be really complicated

* Itisalso not identifiable from most scRNA-seq data (as we only know library size [ instead of
efficiency a,)
Xgc
Zg Xgc
* Without considering batch effects, we may assume YgC~Poisson(legC)

* Itisonly possible to model the gene expression proportion p,. =

Expression model Observation model Method
Point mass (no variation) Poisson Analytic
Gamma Negative Binomial MASS2L edgeRﬂ, DESquﬂ, BASICS#,
20
SAVER Table 1 of Sarkar and
Point-Gamma Zero-inflated Negative PSCL*® Stephens, Nature
Binomial Genetics, 2021
Unimodal (non- Unimodal ashrz46
parametric)
Point-exponential family  Flexible DESCEND?
Fully non-parametric*’ Flexible ashr

* Dependence structure across genes



DSCEND (wang et. al. PNAS 2018)

e Distribution deconvolution

N Distribution Deconvolution 7
Cl'fl;d Hg Technical noise "€ ' Hg ~ H

X .
YyelXge n Poisson(lCch)

g

* Semi-parametric distributional assumption (G-modeling, Efron Biometrika 2016)

hg(x) = mybp + (1 — ng)exp[Q(x)Ta —g(a)]
* (@Q(x) is non-parametric, and is estimated by cubic splines after discretizing the data
 Forx # 0, Assumethat z € x = (21, - ,Zm)

P[X = 2] = exp{Q"a — ¢()}

where (Q is the 5-degree natural cubic spline matrix at x
* Incorporate covariates in the distribution:
* Incorporate covariates in both 1, and the non-zero part

. : — LUBF 2
Non-zero part: assume X, = e CBXgC where X, ~ H,

 Statistical inference: Taylor expansion on the estimating equation



Validation using FISH experiment
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https://mcb.berkeley.edu/faculty/GEN/rinej.html

Modeling distribution of observed counts

 Why do we want to separate the true gene expression variation from the noise distribution?
* Researchers are interested in the proportion of true zeros
* |dentify changes in gene expression variations instead of in mean

* Sometimes we may just want to model the observed counts
* Example: test for gene expression mean changes between two cell types

* Complexity in true gene expression can bring in both over-dispersion and zero-inflation in the observed
count if we just use a Poisson model with cell-specific library size

A common approach is to use a Negative-Binomial distribution or zero-inflated NB distribution

* (Kim et. al. Genome Biology 2020) showed that Poisson distribution is good enough to model Yy
for a relatively homogenous cell population

* (Saket and Satija, Genome Biology 2022) showed that Poisson distribution is not enough to model
Y, for a relatively homogenous cell population if sequencing is not shallow and should use a
Negative Binomial distribution

« A common approach is to use an autoencoder (latent factor model) to capture gene-gene dependence
and cell population heterogeneity use NB likelihood to construct loss function
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