
Lecture 3 
scRNA-seq noise and signal 

distributions



Outline

• Modeling technical noise distributions in scRNA-seq count matrix
• ERCC spike-ins

• Modeling biological variations of gene expressions across cells
• Distribution deconvolution for scRNA-seq
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• Observed count matrix 𝑌 is typically extremely sparse
• Dropout: zeros in the count matrix (a vague concept)
• Two types of zeros

• Biological zeros: true mRNA count is zero
• Technical zeros: true mRNA count is not zero, but observed count is zero 

• We will discuss the measurement error distributions and signal distributions 
(biological variations across cells / gene-gene dependence) separately
• Why do we care about these?

• Reasonable statistical / machine learning model to use in analyzing the data
• How to simulate scRNA-seq data to benchmark different methods?

Technical zeros

Biological zeros

scRNA-seq count matrix is very noisy



Measurement error distribution

• Both reverse transcription and sequencing can 
generate technical zeros, which can be 
theoretically explained by Binomial distributions

𝑌𝑔𝑐~Binomial(𝑋𝑔𝑐, 𝛼𝑐𝛾𝑔)

• Due to low efficiency (𝛼𝑐 < 10%), roughly
𝑌𝑔𝑐~Poisson(𝛼𝑐𝛾𝑔𝑋𝑔𝑐)

• Sequencing depth: total number of reads per cell
• Refer to 𝑝2𝑔: deeper sequencing depth, more 

reads sampled from the library
• Roughly controllable by experimenters, 

depends on the budget



Noise distribution: zero inflation or not?

• Gaussian assumptions on the observed data (even after transformations) usually do not work well
• scRNA-seq data is extremely sparse

• Because of the extreme sparsity of scRNA-seq data, many earlier papers have used a zero-inflated 
model: such as zero-inflated Poisson or zero-inflated negative binomial model for scRNA-seq data

• A zero-inflated model have more parameters to fit, is it worth it?
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ERCC spike-ins

• For UMI counts, 𝑌𝑔𝑐~Poisson 𝛼𝑐𝛾𝑔𝑋𝑔𝑐

A Poisson distribution + cell-specific efficiency seems sufficient

• The above model is only a simplification, can we find empirical evidence?
• Typically challenging to separate biological variations from measurement errors
• Distribution of true gene expression 𝑋𝑔𝑐 can be complicated (will discuss later)

•  𝛼𝑐 is typically also unidentifiable

• ERCC spike-in ‘gene’ 𝑔 (negative controls):

Known
Spike-in 
genes

• 𝑋𝑔𝑐 ~
𝑖.𝑖.𝑑

 Poisson(𝜇𝑔)

• Conventionally, researchers treat 𝑋𝑔𝑐 

as constant across cells

Var 𝑌𝑔𝑐 = 2𝛼𝑐𝛾𝑔𝜇𝑔

• Assume 𝛾𝑔 = 1, then 𝛼𝑐 is identifiable



Noise distribution for UMI data is not zero-inflated

• Some empirical evidence using ERCC spike-ins
• (Wang et. al. PNAS 2018): 

Assuming the Poisson noise model 𝑌𝑔𝑐~Poisson 𝛼𝑐𝑋𝑔𝑐 , used a distribution deconvolution 

method to estimate the distribution of 𝑋𝑔𝑐 across cells for each ERCC spike-in gene
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Noise distribution for UMI data is not zero-inflated

• Some empirical evidence using ERCC spike-ins
• (Svensson, Nature Biotech, 2020): 

Use Negative-Binomial distribution to model the ERCC spike-ins and  𝑌𝑔𝑐~NB 𝜇𝑔, 𝜃𝑔

check if the observed zero proportion match with the estimated values



Factors affecting the noise distribution

• Batch effect: 
• non-biological factors in an experiment cause changes in the data produced by the 

experiment 
• Common causes: laboratory conditions, Choice of reagent lot or batch, Personnel differences, 

Time of day when the experiment was conducted, instruments used to conduct the 
experiment

• Long-standing issue for sequencing data
• New challenge for single-cell sequencing data (more in later lectures)

• Batch effects introduce both biases and over-dispersion to the noise distribution

• With batch effects, the actual noise distribution may be more dispersed than a Poisson model

• Researchers have shown that zero-inflation noise model can still benefit non-UMI 
data



True biological variations

• Distribution of 𝑋𝑔𝑐 across cells can be really complicated

• Diversity of cell types
• many genes are unexpressed in a cell
• cells of distinct types have different genes expressed

• Transcriptional bursting 

• For a given time interval, number of mRNAs for a gene in a cell follows 
Poisson-beta distribution (Kepler and Elston, Biophysical J, 2001)

𝑌~Poisson 𝑠𝑝 , 𝑝~Beta(𝑘𝑜𝑛, 𝑘𝑜𝑓𝑓)

• 𝑋𝑔𝑐 across cells in a homogenous cell population should also follow a 
similar distributionJiang, Yuchao, Nancy R. Zhang, and Mingyao 

Li. "SCALE: modeling allele-specific gene 
expression by single-cell RNA 

sequencing." Genome biology 18 (2017): 1-15.



Modeling true gene expression distribution
• True distribution of 𝑋𝑔𝑐 can be really complicated 

• It is also not identifiable from most scRNA-seq data (as we only know library size 𝑙𝑐 instead of 
efficiency 𝛼𝑐)

• It is only possible to model the gene expression proportion 𝑝𝑔𝑐 =
𝑋𝑔𝑐

σ𝑔 𝑋𝑔𝑐

• Without considering batch effects, we may assume 𝑌𝑔𝑐~Poisson 𝑙𝑐𝑝𝑔𝑐

• Dependence structure across genes

Table 1 of Sarkar and 
Stephens, Nature 
Genetics, 2021



DSCEND (Wang et. al. PNAS 2018)

𝑌𝑔𝑐

Distribution Deconvolution

𝑌𝑔𝑐|𝑋𝑔𝑐 ~
ind

 Poisson 𝑙𝑐𝑋𝑔𝑐

𝐻𝑔

?
𝑋𝑔𝑐 ~

𝑖.𝑖.𝑑
 𝐻𝑔

Technical noise ≈ 𝐻𝑔

• Distribution deconvolution

• Semi-parametric distributional assumption (G-modeling, Efron Biometrika 2016)

ℎ𝑔(𝑥) =  𝜋𝑔𝛿0 + 1 − 𝜋𝑔 exp[𝑄 𝑥 𝑇𝛼 − 𝑔 𝛼 ]

• 𝑄(𝑥) is non-parametric, and is estimated by cubic splines after discretizing the data
• For 𝑥 ≠ 0, Assume that

where 𝑄 is the 5-degree natural cubic spline matrix at 𝒙 
• Incorporate covariates in the distribution:

• Incorporate covariates in both 𝜋𝑔 and the non-zero part

• Non-zero part: assume 𝑋𝑔𝑐 = 𝑒𝑈𝑐𝛽 ෨𝑋𝑔𝑐 where ෨𝑋𝑔𝑐 ~ 𝐻𝑔

• Statistical inference: Taylor expansion on the estimating equation



Validation using FISH experiment

Fluorescence 
in-situ 

hybridization
 (RNA FISH)

~80,000 cells
26 genes

 

Melanoma 
Cell Line

11 genes overlap between FISH 
and Drop-seq

Single cell RNA 
sequencing
(Drop-seq)

~8,000 cells
~12,000 genes

Photo courtesy of Anne Dodson and Professor Jasper Rine
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https://mcb.berkeley.edu/faculty/GEN/rinej.html


Modeling distribution of observed counts
• Why do we want to separate the true gene expression variation from the noise distribution?

• Researchers are interested in the proportion of true zeros
• Identify changes in gene expression variations instead of in mean

• Sometimes we may just want to model the observed counts
• Example: test for gene expression mean changes between two cell types

• Complexity in true gene expression can bring in both over-dispersion and zero-inflation in the observed 
count if we just use a Poisson model with cell-specific library size
• A common approach is to use a Negative-Binomial distribution or zero-inflated NB distribution
• (Kim et. al. Genome Biology 2020) showed that Poisson distribution is good enough to model 𝑌𝑔𝑐 

for a relatively homogenous cell population 
• (Saket and Satija, Genome Biology 2022) showed that Poisson distribution is not enough to model 

𝑌𝑔𝑐 for a relatively homogenous cell population if sequencing is not shallow and should use a 

Negative Binomial distribution

•  A common approach is to use an autoencoder (latent factor model) to capture gene-gene dependence 
and cell population heterogeneity use NB likelihood to construct loss function
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