Lecture 4
scRNA-seq analysis workflow,
normalization, visualization



Outline

e Standard scRNA-seq data analysis workflow: Seurat and Scanpy
* scRNA-seq normalization, highly variable gene selection

 Dimensional reduction, visualization



Seurat (Satija group)

* An R package that is widely used
e Current version v5 supports multi-modality and scalable analysis

Schneider, I., Cepela, J., Shetty, M., Wang, J., Nelson, A. C., Winterhoff, B., & Starr, T. K. (2021). Use of “default’” parameter settings when analyzing
single cell RNA sequencing data using Seurat: a biologist’s perspective. J Transl Genet Genom, 5, 37-49.



Seurat object

Reference tutorial:
https://sib-
swiss.github.io/single-cell-

SeuratObject: :Seurat

sparse matrix

list of objects

@ assays » SeuratObject::Assay5 » @ layers » $ data
@ meta.data » data.frame @ cells $ counts
@ active.assay » character @ features $ scale.data

@ active.ident

L J

vector

@ graphs

SeuratObject: :Graph

@ neighbors

@ reductions

SeuratObject: :DimReduc

training/day1/day1-
2 analysis tools gc.html

@ images

@ project.name # character

@ misc

@ version * package version

@ commands

L 3

SeuratObject: :SeuratCommand

@ tools

* New data storage
infrastructure and
sketch-based
analysis in Seurat v5
that allows analysis
and storage of
millions and cells


https://sib-swiss.github.io/single-cell-training/day1/day1-2_analysis_tools_qc.html
https://sib-swiss.github.io/single-cell-training/day1/day1-2_analysis_tools_qc.html
https://sib-swiss.github.io/single-cell-training/day1/day1-2_analysis_tools_qc.html

Scanpy (Wolf et. al. Genome Biology 2018)

* A python package alternative to Seurat
* Handle large-scale data
* Easy to interface with deep-learning based methods
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scRNA-seq dimension reduction and visualization
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Linear dimension reduction: PCA
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Gene 2 Gene 1 * Interpretation: Find direction of the data that has the largest variation
* Not ideal for visualization

* Requires proper normalization of the data for using Euclidean distance
e High-dimensional PCA is not accurate



scRNA-seg normalization

Why do we need normalization?
e Raw counts across cells are not comparable = adjust for library size
* Make the data more “Gaussian” before using linear methods like PCA

Shifted logarithm

* Library size normalization + taking logarithm

Ve
f(Yye) = 1og(s% + o)

*  Yo: pseudo-count to avoid log(0). Typically yo = 1 to make the normalized data sparse
e s, =1./L sothaty, is not too influential. L = 10* (Seurat and Scanpy default)

e Shifted logarithm is approximately doing some variance stabilization

Var(f( )) Var( c)

if Y;c~NB(ug,0) then var(ch) = Ug + G,ug, variance stabilized if 6 or u, is large

* Scaling: standardize each gene across cells to have mean 0 and variance 1 after log-normalization



Pearson / deviance residuals

Sctransform (Hafemeister and Satija, Genome Biology 2019; Choudhary and Satija, Genome Biology 2022)
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* Estimate 6, as a smoothed function of u,. 6, = oo for small i,

* If we are interested in heterogeneity across cells, then u . contains non-interesting information
* Normalized data is not sparse any more



Pearson / deviance residuals

Deviance residuals (Townes et. al. Genome Biology 2019)
* For general definitions, check a GLM book
 The deviance residuals can look more normal than Pearson residuals

e Assume Poisson model on the observed counts
. ~ XCQ' ~
ch — S1gn (Xcg o /‘ch) 2 XCQ' In ﬁ— o (XCQ o /‘LCQ)
cg

e Assume NB model on the observed counts

: . Xeg X.o+ 0
Z.y = sign (Xcg — ucg) \/2 |:Xcgl A — (Xeg +6)1n : g g ]
cg cg

(formula and notations copied from Lause et. al. Genome Biology 2021)
* Assume multinomial distribution (Townes et. al. Genome Biology 2019)
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e Almost identical to the Poisson deviance



Selection of highly variable genes (HVG)

 High-dimensional PCA is not accurate when latent factors are not strong enough
* |f a gene is expressed homogeneously across cells, it does not contain information about cell
heterogeneity and only contribute noise to PCA

e Selection of HVG:
only use genes that have higher variability across cells than background when doing PCA
* |dentify a subset of 500-2000 genes
e Using Sctransform Pearson residuals
* Calculate variance of Z, for each g across c, select the top ones
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* Default method in Seurat: same idea, but a more straight-forward way to get Z;

Standardized Variance

Z i ch - Yg 3
g i
g, is calculated by fitting a smoothed mean-variance relationship —Ieor TeTooieioz

Average Expression

* Calculate residual deviance:
if Z,4. are deviance residuals, rank genes based on Zcch



Non-linear visualization: t-SNE & UMAP

* PCA for dimension reduction:
* Only use HVG to perform PCA and get PC loadings
» Selection top k (k = 50 in Seurat default) PCs to reduce data dimensions for further cell-level analyses
» Systematic selection of k is possible but can be time consuming and may not worth it

e t-SNE: t-Distributed Stochastic Neighbor Embedding

Paper: https://lvdmaaten.github.io/publications/papers/IMLR 2008.pdf
Presentation: https://www.youtube.com/watch?v=RJVL80Gg3IA&list=UUtXKDgv1AVoG88PLISnGXmw

* UMAP: Uniform Manifold Approximation and Projection

Paper: https://arxiv.org/pdf/1802.03426.pdf
Benchmark paper on scRNA-seq: https://www.nature.com/articles/nbt.4314
Presentation: https://www.youtube.com/watch?v=ng6iPZVUxZU



https://lvdmaaten.github.io/publications/papers/JMLR_2008.pdf
https://www.youtube.com/watch?v=RJVL80Gg3lA&list=UUtXKDgv1AVoG88PLl8nGXmw
https://arxiv.org/pdf/1802.03426.pdf
https://www.nature.com/articles/nbt.4314
https://www.youtube.com/watch?v=nq6iPZVUxZU

The idea of t-SNE @

SNE (stochastic neighbor embedding)

* Preserve the similarity of high-dimensional points in Iow dimensional points
* Measure similarity (conditional distributio n density

Original space: pjli =

N
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Low-dimensional space: exp ||2';)—yj||2) C— 2._ ZZM
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* Because of asymmetry in the KL divergence
* large cost for using widely separated (y;, y;) to represent nearby (x;, x;)
* Small cost for using nearby (y;, y;) to represent widely seperated (x;, x;)
* Only retain local structure of the data




The idea of t-SNE

SNE (stochastic neighbor embedding)

* Determination of the standard deviations g;
* Smaller og; for denser regions and larger og; for sparser regions
* For each |, find g; that reaches a pre-specified perplexity
Perp(P) = 2"®),

where H(P;) is the Shannon entropy of P; measured in bits

H(P) = — ijilogzpﬂi-

* Decrease perplexity to preserve more global structures

» Solution obtained by gradient descent
* |nitialization: randomly sampled points from independent Gaussian
* Large momentum to avoid poor local minima
* Difficult to optimize and has “crowding problem”



The idea of t-SNE

t-SNE (t-distribution density [Cauchy])
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Represent high-dimensional points better and keep moderately far-away points not too close
* Faster to optimize because calculation does not involve exponential
« Computational cost: 0(n?)



Visualization of MNEST data
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(b) Visualization by Sammon mapping.
(b) Visualization by LLE.



The (very high-level) idea of UMAP

e Construct topological representation of high-
dimensional data

e Assume that the data points uniformly lie on a low-
dimensional manifold

* Define local distance by k-nearest neighbors and
construct a weighted k-neighbour graph

* Based on the theory of local fuzzy simplicial set
representations

* Represent the manifold by low-dimensional points

* Minimize cross entropy of fuzzy simplicial set
representation between the low and high-dimensional
space

» Use force-directed graph layout algorithm in low-
dimensional space

¢ Computational cost: 0(n1)
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https://www.youtube.com/watch ?v=ng6iPZVUxZU



https://www.youtube.com/watch?v=nq6iPZVUxZU

UMAP

PCA

Compare PCA, t-SNE, UMAP
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* PCA: keep global distance

e T-SNE: focus on local distance

« UMAP: focus on local distance,
but may keep more global
distance features

https://arxiv.org/pdf/1802.03426.pdf



https://arxiv.org/pdf/1802.03426.pdf

Visualize scRNA-seq using PCA, t-SNE, UMAP
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Data from paper: Lineage dynamics of murine pancreatic development at single-cell resolution, Byrnes et. al. Nature Comm. 2018

Analysis pipeline see Seurat tutorial: https://satijalab.org/seurat/v3.0/pbmc3k_tutorial.html
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https://satijalab.org/seurat/v3.0/pbmc3k_tutorial.html

UMAP is better at showing the cell lineages
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https://ouyanglab.com/singlecell/dimrd.html#trajectory-inference-and-pseudotime



Running time comparison

s PCA
LMAP
& MulticoreTSNE
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 Computation of UMAP is
based on the construction of
k-nearest-neighbor graph
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* Nearest neighbors are
obtained using the top PCs

 Computational cost: O(nt1%)
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https://umap-learn.readthedocs.io/en/latest/benchmarking.html



https://umap-learn.readthedocs.io/en/latest/benchmarking.html
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