Lecture 5
scRNA-seq clustering and
cell type annotation



Outline

* scCRNA-seq clustering methods

* Cell type annotation



Louvain clusteri NE (Blondel et. al., Journal of Statistical mechanics, 2008)

 Community detection method based on the k-nearest neighbor graph
* Clustering results should be mostly consistent with UMAP / tSNE

* Maximize modularity

where:

« A;; represents the edge weight between nodes 7 and j; see Adjacency
matrix;

ok; and k; are the sum of the weights of the edges attached to nodes ¢ and
7, respectively;

em is the sum of all of the edge weights in the graph;

IV is the total number of nodes in the graph;
ec; and c; are the communities to which the nodes 7 and j belong; and
«J is Kronecker delta function:

seen) = {

1 ifc; and c¢; are the same cluster
0 otherwise



Louvain clusteri NE (Blondel et. al., Journal of Statistical mechanics, 2008)

 Community detection is similar to clustering but only requires a network

* Maximizing the modularity Q is NP hard

* Louvain algorithm two phases:
e Step 1: finding local maxima

* Each node in the network is assigned to its own community and there is a pre-
determined order of nodes

* For each node i, move i to the community of each neighboring node, calculate AQ
* Move i to the community where AQ increases most and is positive
* Go to the next node
 Stop if no modularity increase can occur
e Step 2: reduce each community to a single node and build a graph

* Repeat both steps on the new network and stop if Q can not be increased



Louvain clusters: NE (Blondel et. al., Journal of Statistical mechanics, 2008)
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Figure 1. Visualization of the steps of our algorithm. Each pass is made of
two phases: one where modularity is optimized by allowing only local changes
of communities; one where the communities found are aggregated in order to
build a new network of communities. The passes are repeated iteratively until
no increase of modularity is possible.

* The algorithm provides a decomposition
of the network into communities for
different levels of organization

* Computational complexity:
linear in # of edges O(N)

e Resolution ¥ (Reichardt and Bornholdt,

Physical Review E 2006):
1 kik;
Q= %ZZ Aij —v = | o(cu )
i

e Smaller y -> fewer number of clusters
(y = 0, one cluster)

* Can not manually set the number of
clusters (automatic determination

given y)



Louvain clusters: NE (Blondel et. al., Journal of Statistical mechanics, 2008)

* Implementation in Seurat
* Construct weighted graph by KNN after PCA with k = 20 by default
* Weights set Jaccard similarity in the neighbors: proportion of shared overlap in their
local neighbors
* Default resolution 0.8

* Problem of Louvain clustering: may find arbitrarily badly connected communities
* Only consider individual node movements
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Leiden clusteri NE (Traaget. al., Scientific reports, 2019)

Guarantee that the communities are well connected

An updated phase 1 in Leiden clustering:
* Local moving of the nodes like in the Louvain clustering to get an initial partition P
* Refinement Prefineq by splitting a community in the initial partition into multiple
subcommunities
* Prefineq Starts with a singleton partition
* Locally merge nodes if they are not on the same community in Prefineq but are
within the initial partition P
* A node randomly select which community to merge among communities that
increase ()

* Phase 2: create aggregate network where each node is a community in phase 1

* Computationally faster than Louvain clustering by an improved implementation of local
moving phase

* Default clustering method in Scanpy



Leiden cluster NE (Traaget. al., Scientific reports, 2019)
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Clustering methods for scRNA-seq
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Adjusted rand index (ARI)

* A measurement comparing clustering results with true labels
* Invariant to permutations of labels

e Rand index

Given a set of n elements S = {01, ..., 0, } and two partitions of .S to compare,
X ={Xi,...,X,}, apartition of Sinto rsubsets, and Y = {Y1, ..., Y;}, a partition of Sinto s subsets, define the
following:

e a, the number of pairs of elements in .S that are in the same subset in X and in the same subsetin Y

b, the number of pairs of elements in .S that are in different subsets in X and in different subsets in Y’
e, the number of pairs of elements in .S that are in the same subset in X and in different subsets in Y
e d, the number of pairs of elements in .S that are in different subsets in X and in the same subsetin Y

The Rand index, R, is:[!][2]
a+b a+b

at+b+c+d (™)

* Adjusted rand index: adjust by a null model under permutations



SC3 (Kiselev et. al. Nature Methods 2017)
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Run k-means with different data processing methods
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Get a consensus clustering result across different k-means rounds
* Calculate cell-cell similarity matrix by the averaging binary similarity matrix across all

clustering results
* Perform hierarchical clustering with complete agglomeration

Increase robustness compared to a single-round of k-means



Identlfy rare cell types: GiniClust (3 versions, Yuan group)

* A gene that is only expressed highly in a rare cell type may be

filtered out in the HVG selection step

* Then the rare cell type may not be identified as a separate

cluster

* Giniindex can better identify marker gene for rare cell types
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Fano Factor

* Consensus clustering using both Gini index and Fano factors

Gini index is a robust version of CV
e Fano factor: 0% /u (not scale invariant)
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ldentify rare cell types: RacelD (Grunet. al., Nature 2015)

* Rare cell types (tiny clusters) are challenging to identify in a clustering algorithm (like k-means)

 Coreidea: .

* Apply a clustering algorithm (k-means)
* Detect outlier cells within each cluster
* Fit mean-variance relationship across genes within a cluster
* Assume that each gene follows a NB distribution, identify cells
where expression levels for a few genes (2 by default) are off

y=0.1%¥+1.15-x+ 0.1

10

log, variance

e Qutlier cells are further merged to form rare cell type clusters

log, mean

* Computational cost is relatively high
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Definition of a cell type

* A cellular phenotype that is robust across datasets, identifiable based on expression of specific
markers (i.e. proteins or gene transcripts), and often linked to specific functions

e Partly subjective and can change over time

* New technologies allow for a higher resolution view of cells
* Specific “sub-phenotypes” that were not considered biologically meaningful are found to

have important biological implications

A Neurons

e Cell types have i
hierarchical organization
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* Dynamic changes of cell types

Cell differentiation Cell reprogramming




UMAP?2

Cell type annotation

* Assign a cell type to each cluster
Marker genes: Genes that are known to be associated with a particular cell type
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Cell type annotation

 Manual cell type annotation
* Visualize known marker genes of major cell types to annotate the clusters
* Hard to perform if cell types are unknown

Identify top differentially expressed genes for each cluster and link those with marker
genes

* Wilcoxon rank-sum test comparing cells in cluster j with (all) other cells
 Laborintensive and no consensus annotation

* Automatic cell type annotation

* Use pre-defined sets of markers
* Use GPT-4

* Use pre-existing annotated scRNA-seq data (later lectures)
* Traditional methods like linear regression and SVM
* Transfer learning using deep learning



Cel |ASSigﬂ (Zhang et. al., Nature Methods 2019)

* Coreidea:

* Define cell markers

* Build a hierarchical model with latent cell type variables

* Calculate posterior probabilities that a cell belong to a specific cell type
* One drawback: not using the clustering result
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Cel |ASSigﬂ (Pliner et. al., Nature Methods 2019)

* The hierarchical model * Priors for parameters
* Latent categorical indicator 596 ~ log — normal (5’ 02)
zn = cif cell n of type c p(z, =c¢) =m.
e Mixture model : (m1,...,m¢) = Dirichlet (a,. . ., a)

* define py. = 1if gene g is a marker for cell ¢ Noise model

I [yn9|zﬂ — C] = Hnge yng|zn =Cc~ NB (ﬂ'ngc’ gbngc)

 EM algorithm to solve the model (not easy)

where
Log mean expression Cell type specific Otheli covanzie:s (1ncl.‘tia.tch)
- —~ ZP
N —" ~~
Cell size factor Base expression

with the constraint that dg > 0.



SCType (Lanevski et. al., Nature Communications 2022)

* Largest marker gene database for mouse and human cell types
* Integrate two existing databases: CellMarker and PanglaoDB

* Coreidea:
* Define cell-type specificity of markers for each tissue t and a specific marker i

Sf 4 | M;|,—min(|M]|,)
o maz (| M|,)—min(|M]|,)

* Perform clustering and assign a cell type to a cluster

Transform data into z-scores and multiply by the cell-type specificity
Calculate marker-enrichment-score for a specific cell type and a specific cell: an average
contrast between marker genes and negative marker genes for each cell and each cell

type ) z
¢ \/u_f V1

Sum up the contrast across all cells in the cell cluster, and assign the cluster with the cell
type that has the largest score
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GPTCel |type (Hou and Ji, Nature Methods 2024)

Identify cell types of human prostate cells using the following markers. Identify one cell
type for each row. Only provide the cell type name.

CR2, CD24, FAS, CXCR3, CD1c

KLK3, KRT8, KLK2, MSMB, ACPP, KLK1, KLK4

MMRN1, FLT4, RELN, CCL21, PROX, LYVET

TPSAB1, FCER1A, TPSB2, KIT, CD69, HDC

ACTA2, MYO1B, ACTAZ2, ANPEP, DES, MCAM, PDGFRB, CSPG4

1. Dendritic cells

2. Luminal epithelial cells

3. Lymphatic endothelial cells
4. Mast cells

5. Pericytes

Be more specific

1. Myeloid dendritic cells (mDCs)

2. Prostate secretory luminal epithelial cells
3. Prostate lymphatic endothelial cells

4 . Prostate tissue-resident mast cells

5. Prostate vascular pericytes

Identify cell types of human prostate cells using the following markers. Identify one cell type
for each row. Only provide the cell type name. Some could be a mixture of multiple cell types.
Some could be unknown cell types.

KLK3, KRT8, KLK2, MSMB, ACPP, KLK1, KLK4

MMRN1, FLT4, RELN, CCL21, PROX1, LYVE1

CD69, IL7R,, CD3D, CD3E, CD3G,ACTA2, MYO1B, ACTAZ, ANPEP, PDGFRB, CSPG4
DDX49,L0C105371196,MTND1P30,LOC105373682, TAGLN2,ZNF836,ZNF677,COILP1

1. Prostate epithelial cells
2. Lymphatic endothelial cells

3. T cell and smooth muscle cell mixture

4. Unknown cell type

The package automatically generate prompt
message

GPT-4 is able to identify unknown cell types
Systematic benchmarking in the paper



GPTCel Itype (Hou and Ji, Nature Methods 2024)
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