Lecture S
Data integration and batch
correction



Outline

* scCRNA-seq data integration and batch correction
* Three types of integration for single-cell multi-omics data

e Factor model-based methods
 Linear models
e Variational autoencoders

* Cell-similarity based methods

 Comparison between different methods
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What is data integration/alignment?
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Data integration may
serve as the first step
before any down-stream
analyses
* Double dipping:
cells are not longer
independent
anymore after
integration
* Observations are no
longer counts, or
only obtain low-
dimensional
features



Three types of data integration for single-cell multiomics data
[Argelaguet et. al., Nature Biotech 2021]

* Same sets of features, different datasets
* Main challenge: batch effects

. Horizontal integration (features as anchors)
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Three types of data integration for single-cell multiomics data

* Same cell, different types of features (multimodal data)
 Combine different types of features to understand cell-cell similarity
* Missing modality in some datasets

) Cells Vertical integration (cells as anchors)
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Three types of data integration for single-cell multiomics data

» Different cells, different types of features
 What is the basis for integration?
e Extra information about feature connections
e Use subset of cells with overlapping features as “bridges”

Cells Diagonal integration (no anchors)
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Three types of data integration for single-cell multiomics data

* Mosaic integration between the second and third types
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Integration for scRNA-seq data = batch correction?

Un-alighment between datasets

* Biological differences:
» Different cell population (tissue, individual, species)

* Different cell types

e Technical differences:
e batch effects
 different sequencing depth

 Jointly analyze of multiple datasets
* Remove batch effects
* Remove unwanted/not interesting biological differences
‘uninteresting’ differences between individuals, species

* Keep meaningful biological difference between datasets (such as new cell type or true
differential expression of cell type marker genes between conditions)

e Challenge: “unknown” Confounding between batches and cell types



Unsupervised Batch Effect Removal

e Confounding between batches and unknown cell types

 Assume a linear model as below

Genes
Cell types

/ UNKNOWN

Confoundlng

Cells + Noise

c XBT +UVT =X(B +yY)T+UVT — XyD)

* Batches can be confounded with other important biological signals
» Batch effects may not be identifiable without additional assumptions (for instance: X 1 U)



Batch correction with linear model: Limma (Ritchie et. al., NAR 2015)

Batch corrected data: X — R D

. A . . T
The overall gene expression matrix (mean matrix): u, X 1y

Regression Condition
coefficients design matrix
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A ® Batchl || ® Condition]
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L Batch3 | Overall
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modeling
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M
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Developed for bulk RNA-seq data where differential testing across conditions is the primary goal
(DI, DI') needs to be full rank. For scRNA-seq, conditions and batches can be perfectly confounded
Batches can also be confounded with cell types, trajectories in scRNA-seq

Regression Batch
coefficients design matrix
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Batch term matrix

Error

Error matrix of ComBat
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Challenges for batch correction in scRNA-seq

* Batch effects may not be linear

 |f Batches are confounded with hidden factors of the data (like clustering structure), then batch
effects are not identifiable
* Yeells«genes = ZVT 4+ XpatenB + error, B is not identifiable if the latent factors U and Xpatch
can be arbitrarily correlated

* One possible identifiability condition: within the same cell type, cells are biologically
homogenous across batches

* If cell types are already known, what is the purpose of integration?

* Another possible identifiability condition (imTpIicitIy assumed in many similarity based
methods): Xpatcnf is small compared to ZV*, similar cells in batch 2 to a cell in batch 1 keep
the same with/without batches

e Current batch correction methods tend to overcorrect batches effects (Argelaguet et. al., Nature
Biotech 2021). Differential testing between conditions may tend to be conservative after

correction



/ZINB-WaVE (Risso et. al., Nature Comm 2018)

J genes

Known sampla-level covariates Known gene-level covariates Unknown sample-level covariates
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gene-specinc scaling factor specific scaling factor

* The batches are sample-level covariates

* Gene-level covariates can include gene features such as gene length and GC content
IV isthe batch adjusted latent representation of cells

* Implicitly assume that the latent factors and batches are uncorrelated

* They used an L2 penalization on W in the loss function (equivalent to independent Gaussian prior on /)
* The algorithm does not force latent factors and batches to be uncorrelated

 Assume that the observed counts follow ZINB model 12



SCcV| (Lopez et. al. Nature Methods 2018)

e Use variational autoencoder
(next page)
e Main feature: add batch

a Variational posterior Generative model
q(z, 1,1 X s,) p(x,| 2, s, 1) information as extra nodes in
NN1 — .
) Size factor both the input and bottleneck
layer
Mean . | Cell-specific aye
- " scaling
NN2 . .
@ X — _} e Implicitly assumes that latent
S.d.
O NG counts factors Z and Xy atcp, are
)) — _ . _)1| uncorrelated as Xp,tcp is fixed
) M) @7 frequency | and Z has prior Z~N (0, 1)
S = R
X .
O xs N ® NN6 : * Under linear model
NN4 Z,y T
@ s () | Ycells*genes = UV" + XparenB + E
S.d. ropou ]
@®- | estimated Z and Xp4¢cp, are
) - f(Z, S,) |
| | | uncorrelated
Raw expression Nonlinear Variational . Nonlinear Qengrat]ve I
data + batch ID mapping distribution Sampling mapping d|str|bu’;|on | Imputation .
| parameters L ) * Estimated Z can be correlated
Clustering Differential i ;
! —)) Visualization expression with XbatCh in scVI because of
Batch removal using VAE
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Input «---

Details of scVI model

Variational autoencoder

* Assume that the latent variables Z~N (0, ) x |

e Approximate the posterior of Z given input data
by Gaussian distribution

e Encoder: posterior mean and variance of Z as
non-linear functions of input data

* Decoder: non-linear mapping from Z to the observed data

Probabilistic Encoder

q0(2[x)

Mean m

g

Std. dev

z=p+oQ@e
e ~N(0,I)

* Generalization of linear probabilistic factor model to nonlinear

probabilistic factor models

* scVI assumes a ZINB model on the observed data

* Both posterior distributions of Z and mapping from Z to the

observed data depend on the batches

Final output of scVI
* Use latent factors for visualization and clustering
* Use output layer for denoising (imputation)

Ideally they are identical.

X~ x'

An compressed low dimensional

Sampled
latent vector

Probabilistic
Decoder

Po(x|z)

representation of the input.

~ Normal (0, I)

~ log normal (fﬂ,f?y)

- fw (zﬂa Sn)

~ Gamma, (p3, 6)

~ Poisson (£, wy)
~ Bernoulli (fg (zna Sﬂ))
B {yng ifhng =0

0 otherwise

Reconstructed
input
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scGen (Lotfollahi et. al. Nature Methods, 2019)

* Originally designed to perturbation prediction but can also be used for batch correction

* scGen also used VAE, not sure if batches are inputs in the VAE as in scVI

e Batch correction is done to each cell type separately
* Requires cell type information as input data (may not be applicable in practice)
* In the latent space, for each cell type, calculate
6 = avg(Zcondition=1) ~ aVE(Zcondition=0)
* Add 4 to the corresponding latent vectors so cells within the same cell type are mixed
* Get the corrected gene expression matrix

[Cell type] Encoder

Figure from Ryu et.
al. Mol Cells, 2023
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Some benchma rking results (Tran et. al. Genome Biology 2018)

ZINB-WaVE

Batch

® Batch1_Microwell-Seq
® Batch2_Smart-Seq2

Cell Type
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Identical cell
types, different
technologies

Smooth muscle
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Similarity-based batch correction methods

A
Cell type | | = Batchl
o + » Batch?2
™~ o+
o e A
< 3 ‘«‘., R
P ha 4
= +"
+#P+
*zt .ﬁ-‘ﬁ*++
++
3
UMAPI

Common steps:

Project the merged datasets onto a low-dimensional space

Batchl

Batch2

Identify similar cells (pairs of cells) between batches
Correction: correct batch effects so that cells pairs are together on the low-dimensional space

Batch correction is only performed on low-dimensional space
* Previous factor-model-based methods provide batch corrected gene expressions

UMAP2

UMAP]
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MNNcorrect / fast MNN (Hadhverdi L. et. al., Nature Biotech, 2018)
a C
* Steps: g Batch@z g (@

.. . . . A liuxu
a) Measure cell similarity (Euclidean distance after ‘y Coteion ”y
normalization) e vectors W
Batch 1 ' %}/ ) %}/
b) Find paired cells from two batches %w @w
» |dentify KNN of each cell in batch 1 (2) in the other
batch 2 (1)
* Keep the pair of cells if the they are both KNN of
each other - e

c) Batch correction:
 Compute pair-specific differences

e Use Gaussian kernel smoothing (weights) to
compute the correction vector of each cell

* The cell-specific correction vector is a
weighted average of the pair-specific
correction vectors

e Batch 3

e Critical assumption
* Batch effects are relatively small




Use Canonical correlation analysis (CCA) for scRNA-seq
alignment

* CCA: originally used to find best combination of two sets of variables that have largest correlation
* For scRNA-seq, treat each cell as a “feature”, each gene as an “observation”

 Compute weighted combination of cells within each batch so that the combined cells have
best correlation between the two batches

* Essentially solving SVD of Y'Y,
e Left and right eigenvectors of Y{ Y, are estimates of W, and W,

* Treat CCA as a dimension reduction step that minimize the effect of batches
 Why CCA instead of PCA?

Genes Shared cell-types

Shared gene
W £ features
+ Batch effects

+ Features not shared

+ Noise
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Seurat CCA

* MultiCCA (v1) (Butler et. al. Nature Biotech 2018) further uses dynamic time wrapping to further
align the CC vectors to remove remaining batch effects

b Shared, unaligned Bvnambibin
correlation structure i Aligned dataset
Canonical

correlation "
analysis o . w
O % Z
Dataset-specific \ &

cell removal \

I

CC1 t-SNE_1

* They later have developed multiCCA (v2) which is hybrid between multiCCA (v1) and MNNcorrect
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MUultiCCA v2 (Stuart et. al. Cell, 2019)

High-scoring correspondence Low-scoring correspondence

Anchors are consistent with local neighborhoods Anchors are inconsistent with local neighborhoods
datasets into lower dimensions

; @ Reference ;
* PCA may amplify differences between w \
two datasets and focus on variation directions ﬁ

that are unique to one dataset @

* |dentify anchor cells using MNN
e Give each cell an anchor score
* Check MNN also in the original space to improve robustness
* Anchors scoring: find consistency of KNNs within each dataset and with other datasets
* Anchor weighting W: a matrix of anchors by cellsin Y,
* Weights depend on cell-cell distance, only use k nearest anchors
« Alignment: ¥, =Y, + (Y o — Y, )W
* Multiple datasets: align sequentially

* Steps
 CCA asin MultiCCA V1 to project both

* Label transfer and feature imputation
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Scanorama (Hie et. al. , Nature Biotech 2019)

Main advantage: computationally fast MNN

* Find KNN of a cell in one dataset from all other datasets

* To reduce computational cost in finding KNN by approximation with random projection trees
to make computational cost less than O (kn)

* Anchor cells: keep a pair of cells if they are KNN to each other
 Computational cost reduce from 0 (k?nyn,) to 0(k min(ny, n,))

* Batch correction from anchors using Gaussian kernel smoothing weights same as
MNNcorrect/fastMNN

» Scanorama performs better than MNNcorrect/fastMNN in benchmarking studies

* Only methodological difference between Scanorama and MNNcorrect/fastMNN seems to be the
dimension reduction first step before finding KNN
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Collect scRNA-seq Find nearest neighbors Keep mutually Create scRNA-seq

experiments among all other data sets linked cells panorama o
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Harmony (Korsunsky et. al. Nature Methods, 2019)

Steps
* PCA

* |teratively perform
e Soft k-means clustering
* Penalize clusters that has less batch diversity

Ogi
in Y Ryl|Z; — Yi|” + o Ry log Ryi + 00Ry,; 1 ;
rgiglik kil i||” + oRy; log Ri; + 06Ry, og(Eki)qﬁ

K
s..V;Vi Ry > 0,Y; Y Ry =1
k=1

O < [0, 1)%*B The observed co-occurence matrix of cells in clusters (rows) and batches

(columns).

E € [0, 1]%B The expected co-occurence matrix of cells in clusters and batches, under the

assumption of independence between cluster and batch assignment.

Y <0, 1]d>< K Cluster centroid locations in the k-means clustering algorithm.



Harmony (Korsunsky et. al. Nature Methods, 2019)

Steps
* PCA

* lteratively perform
e Soft k-means clustering
* Penalize clusters that has less batch diversity
* Goal: make cells of the same cell type in each cluster

* Mixture of experts model for correction

* Compute cluster-specific batch correction by linear regression
e Assume that the mean of each cell within each cluster linearly depend on the batch information

* Move cells in each cluster by subtracting the batch and cluster specific mean effect

Dataset | Cell type
QOO0 bnm 4 /lterate until convergence \
C":‘J;:,';_. C"«’S‘f C"-"S Clus,
" > C_;/ s, e = e
& 2 . ’0‘0’ o 2 . =) . of 2 ’::t’
s % " . > ® -~ ’ e > Ot >
. . ”"“ O . & N - ‘l‘ . - =1 4 e
. ®
aef 3 Clu aef 3 Clugy, L Aer 3 Clusg aer 3 Clusy,
C 1 S S ' S ,
N = 4 44 ‘¢
+ * 9 - o/

D Move cells based on
soft cluster membership

C Get dataset correction
factors for each cluster

B Get cluster centroids
for each dataset

A Soft assign cells to
mixed dataset clusters



Comparison of computational costs
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Summary

* Factor-model-based methods and cell-similarity based methods seem to be based on two
different sets of assumptions on the batch effects
* Factor-model-based: batch information and latent factors are nearly orthogonal to each

other
* Cell-similarity based: batch effect is very small compared to biological signals

* The two assumptions seem quite different -> what is the consequence on performance?

* Factor-model-based methods can provide batch corrected gene expression matrix
* May introduce false positives in down-stream differential testing

* Performance: Without using additional cell type information, cell-similarity based methods
perform slightly better but the two strategies seem comparable



Benchmarking results (Tran et. al. Genome Biology 2020)

Rank Score

A

A
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limma
MMD-ResNet
ComBat
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MNN Correct
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Benchmarking results (Luecken et. al. Nature Methods 2022)
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