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 Week 1-5: Basic Concepts and methods in causal inference
* Mostly follow Herman and Robins’ book
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* Week 6-9: Discuss causal papers in genetics / clinical applications



Lecture 1

Topic: Potential outcome framework

e Definition of causal effects

 Randomized experiments

o Completely randomized experiments

o Conditional randomizaed experiment

Some slides are borrowed from slides of Prof. Fan Li at Duke Uni.



Causality

* We know what causal effects mean as a human being

| would rather discover one causal law than be King of Persia.
— Democritus

We have knowledge of a thing only when we have grasped its cause.
— Aristotle, Posterior Analytics

* How to quantitatively define “causal effects” with mathematical notations?



Association # Causation

° Confounding confounder

A Y
treatment outcome

* Examples of confounding

o Ice cream consumption and number of people drowned. Confounder: temperature
o Medical treatment and patient outcome. Confounder: age, sex, other complications
o Education and income. Confounder: family

o Confounder can reserve the sign of the correlation between treatment and outcome

(Simpson’s paradox, discuss in later slides)



The potential outcome framework
[Neyman (1923), Rubin (1974)]

e A =1 or 0: treatment with two levels (treatment and no treatment)

 For an individual i:

o Y;(1): whether he/she survives if receiving treatment

Causal effectof AonY

o |Y;(0): whether he/she survives if not receiving treatment

for individual i
Y;(1) # Y;(0)

Potential outcomes (counterfactuals):
only one of the potential outcomes can be observed

* Observed data: Y; = Y;(1)A4; + Y;(0)(1 — 4;)



Assumptions in the above notation? (SUTVA)

* Consistency

= There is only one version of the treatment These two assumptions are also
called SUTVA
Y (a) needs to be well defined (Stable Unit Treatment Value
. Assumption) [Rubins 1978, 1980,
-- counterexamples: effect of BMI, specific procedure of a treatment 1990]

= We assume thatY = Y (4)

-- counterexamples: drug effect in a trial v.s. in reality
* No interference
One individual’s outcome is not affected by other individuals’

-- counterexamples: vaccination, advertising, infectious disease, social networks,

agricultural experiments



‘ects

Average causal e

* Y;(1) # Y;(0) impossible to know for every individual

* One quantity that is potentially easiest to identify:
Average causal effect: E(Y (1)) # E(Y(0)) for a target population

= Average treatment effect: E(Y (1) — Y (0))

= Causal risk ratio [for binary outcome]: P(Y(1) = 1)/P(Y(0) = 1)

* There are other quantities of the causal effects that we can quantify, but they need

to be functions of the potential outcomes Y (a)

* How to identify these quantities from observed Y? (Y = Y(1)A + Y (0)(1 — A))

Essentially a missing data problem!



Completely Randomized Experiments

* For 30 people in the experiment, flip a coin (not necessarily unbiased) to decide who

receives a treatment

 Randomly select 10 people to receive treatment

We have

A 1Y(a)foralla

Called exchangeability / ignorability




‘ects

|[dentify average causal e

E[Y(a)
=E [Y(a) | A =a] Exchangeability
=E[Y(A) | A= q]
=E[Y | A=a] Consistency

* We are considering an ideal randomized experiment

* What might not be ideal in practice?
e Adhersive to assignment
* Censoring / lost to follow-up
* Multiple versions of assignment

* Unblinded experiment (placebo effect)



Conditionally randomized experiments

e L:severity of the heart disease (L = 1 if severe)

L = 1:randomly assign treatment to 75% of individuals

L = 0:randomly assign treatments to 50% of individuals

Conditional exchangeability

AlY(a)|Lforalla

In each subgroup of L, run a completely
randomized experiment




‘ects are still identifiable

Average causal e

E[Y(a)]
—E|[E [Y(a) | L]
=E[E[Y(a) | L,A=a]] Conditional exchangeability
=E[E[Y(A)| L, A = dl]
=E[E|Y | L,A=al]] Consistency




E[E[Y |L,A=d] ZE[Y | d

Average causal effect

S
EE[Y|LA=ad]=> E[Y|L=1,A=dP(L=1)
Does not have a causal interpretation [
S

ElY|A=al=) E[Y|L=1,A=a]P(L=1]|A=a)

Distribution of L conditional on different values of A can be different
(L is a confounder)



Simpson’s paradox: kidney stone treatment

* Compare the success rates of two treatment of kidney stores

* Treatment A: open surgery; treatment B: small puctures

Treatment A Treatment B

Small stones | 93% (81/87) 87% (234/270)

Large stones | 73% (192/263) | 69% (55/80)
Both 78% (273/350) | 83% (289/350)

 What is the confounder here? Severity of the case



Simpson’s paradox or Yule-Simpson effect
(K Pearson et al. 1899; Yule 1903; Simpson 1951)

* Simpson’s paradox: a trend appears in different groups of data but disappears or
reverses when these groups are combined

* Another well-known example is the Berkeley admission gender bias (Bickel et al.,
Science, 1976)



Standardization

E[Y(a)]=EE[Y|L,A=qa]]=) E[Y|L=1,A=a]P(L=1)

Table 2.2 l

Rheia
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Ares
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Inverse probability weighting (IPW)

E[Y(a)] =E [E[Y | L, A = a]
E[Y1aee | L]

| PA=alT

(conditional exchangeability)

14—
Table 2.2 =a
=) Y| =E[W,Y]
Rheia ]P) [A = Qa ’ L]

Kronos -
Demeter
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Dionysus
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Propensity score: e(L) =P[A=1|L]




Implicit Assumption

For standardization and IPW we implicitly need assumptions:

1. Discrete A (can be generalized)

2. Positivity / Overlapping
P[A=al|L]>0

for all I where P[L = 1] > 0 in the target population (population of interest).

* Intuition: if we assign A = 1 to all patients under severe condition, then there is no

information from the data to identify P[Y(0)| L = 1]



