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Outline
• Week 1-5:   Basic Concepts and methods in causal inference

• Mostly follow Herman and Robins’ book

• Week 6-9: Discuss causal papers in genetics / clinical applications 

Causal 
questions

Quantities that 
can be identified 

by observed 
variables

Estimation 
and inference 

with data

Translate

Identification
assumptions

Statistical 
Estimation

Model 
Assumptions

Chapter 1-4: Potential outcome framework
Chapter 6-9: DAG
Chapter 16: IV
Mediation

Chapter 11-15
Chapter 18 



Lecture 1

• Definition of causal effects

• Randomized experiments

o Completely randomized experiments

o Conditional randomizaed experiment

Topic: Potential outcome framework

Some slides are borrowed from slides of Prof. Fan Li at Duke Uni.



Causality
• We know what causal effects mean as  a human being

• How to quantitatively define “causal effects” with mathematical notations?

I would rather discover one causal law than be King of Persia.
— Democritus

We have knowledge of a thing only when we have grasped its cause.
— Aristotle, Posterior Analytics



Association ≠ Causation
• Confounding

• Examples of confounding

o Ice cream consumption and number of people drowned. Confounder: temperature

o Medical treatment and patient outcome. Confounder: age, sex, other complications

o Education and income. Confounder: family

o Confounder can reserve the sign of the correlation between treatment and outcome

(Simpson’s paradox, discuss in later slides)
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The potential outcome framework
[Neyman (1923), Rubin (1974)]

• 𝐴 = 1 or 0: treatment with two levels (treatment and no treatment)

• For an individual 𝑖:

o 𝑌!(1): whether he/she survives if receiving treatment

o 𝑌!(0): whether he/she survives if not receiving treatment

• Observed data: 𝑌! = 𝑌! 1 𝐴! + 𝑌!(0)(1 − 𝐴!)

Potential outcomes (counterfactuals): 
only one of the potential outcomes can be observed

Causal effect of 𝐴 on 𝑌
for individual 𝑖

𝑌!(1) ≠ 𝑌!(0)



Assumptions in the above notation? (SUTVA)

• Consistency

§ There is only one version of the treatment

𝑌(𝑎) needs to be well defined

-- counterexamples: effect of BMI, specific procedure of a treatment

§ We assume that 𝑌 = 𝑌(𝐴)

-- counterexamples: drug effect in a trial v.s. in reality

• No interference

One individual’s outcome is not affected by other individuals’

-- counterexamples: vaccination, advertising, infectious disease, social networks,

agricultural experiments

These two assumptions are also
called SUTVA

(Stable Unit Treatment Value 
Assumption) [Rubins 1978, 1980, 

1990]



Average causal effects
• 𝑌!(1) ≠ 𝑌! 0 impossible to know for every individual

• One quantity that is potentially easiest to identify:

Average causal effect: 𝐸(𝑌(1)) ≠ 𝐸(𝑌(0)) for a target population

§ Average treatment effect: 𝐸(𝑌 1 − 𝑌(0))

§ Causal risk ratio [for binary outcome]: P(𝑌 1 = 1)/𝑃(𝑌 0 = 1)

• There are other quantities of the causal effects that we can quantify, but they need 

to be functions of the potential outcomes 𝑌(𝑎)

• How to identify these quantities from observed 𝑌? (𝑌 = 𝑌 1 𝐴 + 𝑌(0)(1 − 𝐴))

Essentially a missing data problem!



Completely Randomized Experiments

• For 30 people in the experiment, flip a coin (not necessarily unbiased) to decide who 

receives a treatment

• Randomly select 10 people to receive treatment

We have 

𝐴 ⊥ 𝑌 𝑎 for all 𝑎

Called exchangeability / ignorability



Identify average causal effects

• We are considering an ideal randomized experiment

• What might not be ideal in practice?

• Adhersive to assignment

• Censoring / lost to follow-up

• Multiple versions of assignment

• Unblinded experiment (placebo effect)



Conditionally randomized experiments

• 𝐿: severity of the heart disease (𝐿 = 1 if severe)

• 𝐿 = 1: randomly assign treatment to 75% of individuals

• 𝐿 = 0: randomly assign treatments to 50% of individuals 

Conditional exchangeability

𝐴 ⊥ 𝑌 𝑎 | 𝐿 for all 𝑎

In each subgroup of 𝐿, run a completely 
randomized experiment



Average causal effects are still identifiable



Distribution of L conditional on different values of A can be different 
(L is a confounder)

Average causal effect

Does not have a causal interpretation



Simpson’s paradox: kidney stone treatment
• Compare the success rates of two treatment of kidney stores
• Treatment A: open surgery; treatment B: small puctures

• What is the confounder here? Severity of the case



Simpson’s paradox or Yule-Simpson effect
(K Pearson et al. 1899; Yule 1903; Simpson 1951)

• Simpson’s paradox: a trend appears in different groups of data but disappears or 
reverses when these groups are combined

• Another well-known example is the Berkeley admission gender bias (Bickel et al., 
Science, 1976)



Standardization



Inverse probability weighting (IPW)

Propensity score: 



Implicit Assumption

For standardization and IPW we implicitly need assumptions:

1. Discrete 𝐴 (can be generalized)

2. Positivity / Overlapping

𝑃 𝐴 = 𝑎 𝐿] > 0

for all 𝑙 where 𝑃 𝐿 = 𝑙 > 0 in the target population (population of interest). 

• Intuition: if we assign A = 1 to all patients under severe condition, then there is no 

information from the data to identify 𝑃 𝑌(0) 𝐿 = 1]


