
Topics in Causal Inference
STAT41530

Jingshu Wang



Lecture 6

• Randomization inference 

• Point estimation for observational data

• Statistical inference

• Bootstrap

• Regular and asymptotically linear (RAL) estimator

Topic: 
Estimation and statistical inference



Estimation for Completely randomized experiment

Joint distribution (𝑌(0), 𝑌(1)) is unidentifiable

• Average treatment effect: 𝜏 = 𝐸 𝑌 1 − 𝐸[𝑌(0)]

• Point estimator for 𝜏 :
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• Statistical inference for 𝜏

• Assume that (𝑌" 0 , 𝑌" 1 , 𝐴") are i.i.d across 𝑖

• Randomization inference: perform statistical test without the i.i.d. assumption

• View all potential outcomes {𝑌! 0 , 𝑌! 1 }!"#$ as fixed constants

• Randomness in data comes solely from random treatment assignment

• 𝑌! = 𝐴!𝑌! 1 + (1 − 𝐴!)𝑌! 0 : random and is either 𝑌! 0 or 𝑌! 1

𝐴

𝑌
𝐴 ⊥ 𝑌 𝑎 for all 𝑎



Fisher randomization test

• Test for sharp null hypothesis: 𝐻&: 𝑌" 0 = 𝑌" 1 for 𝑖 = 1, 2,⋯ , 𝑛

• All potential outcomes are known under 𝐻&: 𝑌" 0 = 𝑌" 1 = 𝑌" à fixed

• Distribution of {𝐴"} is known à distribution of 𝜏̂ = !
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• Procedure:

• Randomly draw treatment assignments {𝐴"
(()} for 𝐵 times

• Each time compute the corresponding observed outcomes 𝑌"
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• {𝜏̂ ( , 𝑏 = 1,⋯ , 𝐵} form the null distribution of 𝜏̂, and we compute p-value by comparing the 

observed 𝜏̂ with its null distribution

• The idea work for both completely randomized experiment / conditional randomized experiment



Neyman repeated sampling inference

• Provide a conservative CI for 𝜏 with randomization inference

• Variance of 𝜏̂ satisfy
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• Sample variances of 𝑌" for the treatment / control group (𝑠,*) provides unbiased estimates of 𝑆,*

• 𝑆+* is not identifiable

• A conservative estimate of 𝑉𝑎𝑟 𝜏̂ : A𝑉 = !
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• Finite sample distribution of 𝜏̂ is complicated

• Asymptotic normality: under proper assumptions  𝑛(𝜏̂ − 𝜏) → 𝑁(0, 𝑛𝑉)



Estimation in observational studies

• IPW

• Standardization (outcome regression)

• Doubly robust estimator

• Matching
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Inverse probability weighting (IPW) estimator

•

• Weights create a “pseudo-population” where covariates between two groups are balanced:

𝐸
𝐴𝐿
𝑒 𝐿 = 𝐸

1 − 𝐴 𝐿
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• IPW estimator

• We can estimate 𝑒(𝐿) by logistic regression 

• IPW with normalized weights (Fact: 𝐸 !*'"
1 2

= 1):

Typically reduce variance and lead to more stable estimates (Hirano, Imbens, Ridder 2003 Ecnometrica)

We should check for 
covariance balancing after 
weighting to evaluate the 
estimate of 𝑒(𝐿)



Standardization (outcome regression) estimator

• Put a model for the conditional expectation

• Linear model: 𝜇,(𝐿) = 𝐸[𝑌 | 𝐴 = 𝑎, 𝐿] = 𝛽& + 𝛽!𝑎 + 𝛽*𝐿

• This is essentially a model on the potential outcomes:

𝐸[𝑌(𝑎)| 𝐿] = 𝐸[𝑌 | 𝐴 = 𝑎, 𝐿] = 𝛽& + 𝛽!𝑎 + 𝛽*𝐿

• Estimator
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What if we incorrectly specify the parametric models for 𝑒 𝐿 or 𝜇!(𝐿)? 
[𝑒 𝐿 = 𝑒" 𝐿 = 1 − 𝑒# 𝐿 ]



Doubly robust estimator estimator

• Let

• If we correctly specify the propensity score model, then 𝑒̃! 𝐿 = 𝑒! 𝐿

• If we correctly specify the outcome model, then J𝜇! 𝐿 = 𝜇! 𝐿

• Doubly robust property: if either model is correct, we have 𝐸[𝑌(𝑎)| 𝐿] = 𝐸[𝑓(𝑎, 𝐿, 𝑌)|𝐿]

• Estimator:



Matching estimator

• 𝐽": 𝑀" closest units to unit j under alternative treatment

• Define 

A𝑌" 1 = N
1
𝑀"
/

#∈%!
𝑌# if 𝐴" = 0

𝑌" if 𝐴" = 1
, A𝑌" 0 = N

𝑌" if 𝐴" = 0
1
𝑀"
/

#∈%!
𝑌# if 𝐴" = 1

• Matching estimator:
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• Reference review paper by Stuart (2008, Stat Sci)

• R package: Matching, Matchit



Bootstrap

• Use bootstrap samples to approximate both bias(𝑡̂) and var(𝑡̂)

• Bootstrap by sampling with replacement can be used for statistical inference of IPW, 

standardization and doubly robust estimators

• A more complicated bootstrap is needed for matching estimator (Otsu and Rai, 2017 JASA)

• Need large 𝑛

𝐹

𝐹 → &𝐹

Parameter

𝑡(𝐹)

Estimator

𝑡̂

𝑡( &𝐹) 𝑡̂Q∗, ⋯ , 𝑡̂S∗
B bootstrap samples


