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Lecture 6

Topic:
Estimation and statistical inference

e Randomization inference
 Point estimation for observational data

e Statistical inference

* Bootstrap

* Regular and asymptotically linear (RAL) estimator



Estimation for Completely randomized experiment
A
l A 1Y(a)foralla Joint distribution (Y (0), Y (1)) is unidentifiable

* Average treatment effect: t = E[Y(1)] — E[Y (0)]

e Point estimator for 7 :

 Statistical inference for t
* Assume that (Y;(0),Y;(1), 4;) arei.i.d across i
* Randomization inference: perform statistical test without the i.i.d. assumption
 View all potential outcomes {Y;(0), Y; (1)}~ as fixed constants

* Randomness in data comes solely from random treatment assignment

« Y, =A4;Y;(1) + (1 — A;)Y;(0): random and is either Y;(0) or Y;(1)



Fisher randomization test

Test for sharp null hypothesis: Hy: Y;(0) =Y;(1) fori = 1,2,:-,n

All potential outcomes are known under Hy: Y;(0) = Y;(1) = Y; = fixed

Distribution of {4;} is known = distribution of T = nil Ll Yilg=1 — nio

i=1Yi1y,—0 is known under H,

Procedure:

* Randomly draw treatment assignments {Agb)} for B times

* Each time compute the corresponding observed outcomes Yi(b) = Agb)Yi(l) + (1 - Agb))Yi(O) and

o ab) — 1 on () _1sgn v
teststatlstlcsr()—n1 =Y Lm o 2i=1Y; Lo

. {f(b), b =1,---,B}form the null distribution of £, and we compute p-value by comparing the
observed T with its null distribution

* The idea work for both completely randomized experiment / conditional randomized experiment



Neyman repeated sampling inference

* Provide a conservative Cl for T with randomization inference

* Variance of T satisfy

A 1 2 1 2 1 2
V:VQT(T) :_Sl +_SO __ST
Tl1 no n

_ Z?:]_[Yl(a)_?(a)]z a = O 1. SZ _ Z?=1[Ti—'l']2
- n-1 P reET n-1

. SZ unknown fixed parameters
 Sample variances of Y; for the treatment / control group (s2) provides unbiased estimates of S?
« SZis notidentifiable

. . ~ o1 1
* A conservative estimate of Var(t):V = — sé+ n—szz
1 2

* Finite sample distribution of 7 is complicated

« Asymptotic normality: under proper assumptions \n(f — t) = N(0,nl)



Estimation in observational studies

A =

—
Y

L A1Y(a)|L foralla

* |PW
e Standardization (outcome regression)
* Doubly robust estimator

* Matching



Inverse probability weighting (IPW) estimator

e E[Y(a)]=E Yla ]

[P(A —a|L)
* Weights create a “pseudo-population” where covariates between two groups are balanced:

(1 AL We should check f
e should check for
e(L) 1= e(L) B covariance balancing after
e IPW estimator weighting to evaluate the
R 1 Yila,—1 1 Yila,—o estimate of e(L)
Frew = 1D a(L;) n Do o(Ly)
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* We can estimate e(L) by logistic regression

* |IPW with normalized weights (Fact: E 18‘2:)1 =

Yila, =1 Yila,=o

. 2iEDy Ty
la,=1 la,=0

> 3 > TAL)

Typically reduce variance and lead to more stable estimates (Hirano, Imbens, Ridder 2003 Ecnometrica)




Standardization (outcome regression) estimator

Put a model for the conditional expectation
* Linearmodel: u,(L) = E[Y |A = a,L] =y + p1a+ B,L
e This is essentially a model on the potential outcomes:
ElY(@)|L] = E[Y |A = a,L] = Bo+ pra+ B,L

* Estimator
n
1
t== 1<L>——zuo(m
=1

What if we incorrectly specify the parametric models for e(L) or u,(L)?
l[e(L) = e;(L) =1 —¢eo(L)]



Doubly robust estimator estimator

e Let

YlA:a 1A:a — éa(L)

f(a7L7Y): &, (L) - é.(L) ,&a(L)

 If we correctly specify the propensity score model, then é,(L) = e, (L)

* If we correctly specify the outcome model, then i, (L) = u,(L)
EY|[A=aLP[A=a|L] - (P[A=a| L] - &(L)) (L)

éa(L)
pa(L)ea(L) — ea(L)fa(L) + €a(L)fra(L)

E[f(a?L7Y)|L] =

= ~ +/La(L)

* Doubly robust property: if either model is correct, we have E[Y(a)| L] = E[f(a,L,Y)|L]

* Estimator:

1 YVila,=1 la=1—eLi). 1 Yila,—0 la,—0o—(1—e(L))..
T EZ[ e(L;) e(L) ‘“(LZ)] nz ll—E(Lz-) - 1 —e(L) HolLs)
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Matching estimator

Ji: M; closest units to unit j under alternative treatment

e Define

* Matching estimator:

f:% )——ZY(O)

* Reference review paper by Stuart (200 Stat Sci)
* R package: Matching, Matchit



Bootstrap

Parameter Estimator
t(F) t
B bootstrap samples
F—F t(F) O

» Use bootstrap samples to approximate both bias(£) and var(£)

e Bootstrap by sampling with replacement can be used for statistical inference of IPW,
standardization and doubly robust estimators
A more complicated bootstrap is needed for matching estimator (Otsu and Rai, 2017 JASA)

* Needlargen



