Topics in Causal Inference

STAT41530 Jingshu Wang

Lecture 6

Topic: Estimation and statistical inference

- Randomization inference
- Point estimation for observational data
- Statistical inference
 - Bootstrap
 - Regular and asymptotically linear (RAL) estimator

Estimation for Completely randomized experiment

 $A \downarrow Y \qquad A \perp Y(a) \text{ for all } a \qquad \text{Joint distribution } (Y(0), Y(1)) \text{ is unidentifiable}$

- Average treatment effect: $\tau = E[Y(1)] E[Y(0)]$
- Point estimator for τ :

$$\hat{\tau} = \frac{1}{n_1} \sum_{i=1}^n Y_i \mathbf{1}_{A_i=1} - \frac{1}{n_0} \sum_{i=1}^n Y_i \mathbf{1}_{A_i=0}$$

- Statistical inference for au
 - Assume that $(Y_i(0), Y_i(1), A_i)$ are i.i.d across i
 - Randomization inference: perform statistical test without the i.i.d. assumption
 - View all potential outcomes $\{Y_i(0), Y_i(1)\}_{i=1}^n$ as fixed constants
 - Randomness in data comes solely from random treatment assignment
 - $Y_i = A_i Y_i(1) + (1 A_i) Y_i(0)$: random and is either $Y_i(0)$ or $Y_i(1)$

Fisher randomization test

- Test for sharp null hypothesis: $H_0: Y_i(0) = Y_i(1)$ for $i = 1, 2, \dots, n$
- All potential outcomes are known under $H_0: Y_i(0) = Y_i(1) = Y_i \rightarrow fixed$
- Distribution of $\{A_i\}$ is known \rightarrow distribution of $\hat{\tau} = \frac{1}{n_1} \sum_{i=1}^n Y_i \mathbf{1}_{A_i=1} \frac{1}{n_0} \sum_{i=1}^n Y_i \mathbf{1}_{A_i=0}$ is known under H_0
- Procedure:
 - Randomly draw treatment assignments $\{A_i^{(b)}\}$ for B times
 - Each time compute the corresponding observed outcomes $Y_i^{(b)} = A_i^{(b)}Y_i(1) + (1 A_i^{(b)})Y_i(0)$ and

test statistics
$$\hat{\tau}^{(b)} = \frac{1}{n_1} \sum_{i=1}^n Y_i^{(b)} \mathbf{1}_{A_i^{(b)}=1} - \frac{1}{n_0} \sum_{i=1}^n Y_i^{(b)} \mathbf{1}_{A_i^{(b)}=0}$$

- $\{\hat{\tau}^{(b)}, b = 1, \dots, B\}$ form the null distribution of $\hat{\tau}$, and we compute p-value by comparing the observed $\hat{\tau}$ with its null distribution
- The idea work for both completely randomized experiment / conditional randomized experiment

Neyman repeated sampling inference

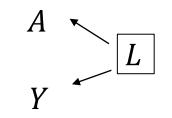
- Provide a conservative CI for au with randomization inference
- Variance of $\hat{\tau}$ satisfy

$$V = Var(\hat{\tau}) = \frac{1}{n_1}S_1^2 + \frac{1}{n_0}S_0^2 - \frac{1}{n}S_\tau^2$$

•
$$S_a^2 = \frac{\sum_{i=1}^n [Y_i(a) - \bar{Y}(a)]^2}{n-1}$$
, $a = 0,1$; $S_\tau^2 = \frac{\sum_{i=1}^n [\tau_i - \tau]^2}{n-1}$ unknown fixed parameters

- Sample variances of Y_i for the treatment / control group (s_a^2) provides unbiased estimates of S_a^2
- S_{τ}^2 is not identifiable
- A conservative estimate of $Var(\hat{\tau})$: $\hat{V} = \frac{1}{n_1}s_1^2 + \frac{1}{n_2}s_2^2$
- Finite sample distribution of $\hat{\tau}$ is complicated
- Asymptotic normality: under proper assumptions $\sqrt{n}(\hat{\tau} \tau) \rightarrow N(0, nV)$

Estimation in observational studies

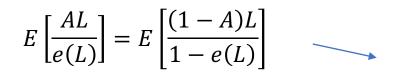


 $A \perp Y(a) \mid L$ for all a

- IPW
- Standardization (outcome regression)
- Doubly robust estimator
- Matching

Inverse probability weighting (IPW) estimator

- $\mathbb{E}[Y(a)] = \mathbb{E}\left[\frac{Y1_{A=a}}{P(A=a \mid L)}\right]$
- Weights create a "pseudo-population" where covariates between two groups are balanced:



We should check for covariance balancing after weighting to evaluate the estimate of e(L)

IPW estimator

$$\widehat{\tau}_{IPW} = \frac{1}{n} \sum_{i} \frac{Y_i 1_{A_i=1}}{\widehat{e}(L_i)} - \frac{1}{n} \sum_{i} \frac{Y_i 1_{A_i=0}}{1 - \widehat{e}(L_i)}$$

- We can estimate e(L) by logistic regression
- IPW with normalized weights (Fact: $E\left[\frac{1_{A=1}}{e(L)}\right] = 1$):

$$\hat{\tau}_{IPW,2} = \frac{\sum_{i} \frac{Y_{i} \mathbf{1}_{A_{i}=1}}{\widehat{e}(L_{i})}}{\sum_{i} \frac{\mathbf{1}_{A_{i}=1}}{\widehat{e}(L_{i})}} - \frac{\sum_{i} \frac{Y_{i} \mathbf{1}_{A_{i}=0}}{\mathbf{1} - \widehat{e}(L_{i})}}{\sum_{i} \frac{\mathbf{1}_{A_{i}=0}}{\mathbf{1} - \widehat{e}(L_{i})}}$$

Typically reduce variance and lead to more stable estimates (Hirano, Imbens, Ridder 2003 Ecnometrica)

Standardization (outcome regression) estimator

- Put a model for the conditional expectation
- Linear model: $\mu_a(L) = E[Y \mid A = a, L] = \beta_0 + \beta_1 a + \beta_2 L$
- This is essentially a model on the potential outcomes:

$$E[Y(a)|L] = E[Y|A = a, L] = \beta_0 + \beta_1 a + \beta_2 L$$

• Estimator

$$\hat{\tau} = \frac{1}{n} \sum_{i=1}^{n} \hat{\mu}_1(L_i) - \frac{1}{n} \sum_{i=1}^{n} \hat{\mu}_0(L_i)$$

What if we incorrectly specify the parametric models for e(L) or $\mu_a(L)$? $[e(L) = e_1(L) = 1 - e_0(L)]$

Doubly robust estimator estimator

• Let

$$f(a,L,Y) = \frac{Y1_{A=a}}{\tilde{e}_a(L)} - \frac{1_{A=a} - \tilde{e}_a(L)}{\tilde{e}_a(L)}\tilde{\mu}_a(L)$$

- If we correctly specify the propensity score model, then $\tilde{e}_a(L) = e_a(L)$
- If we correctly specify the outcome model, then $\tilde{\mu}_a(L) = \mu_a(L)$

$$\mathbb{E} \left[f(a, L, Y) \mid L \right] = \frac{\mathbb{E} \left[Y \mid A = a, L \right] \mathbb{P} \left[A = a \mid L \right] - \left(\mathbb{P} \left[A = a \mid L \right] - \tilde{e}_a(L) \right) \tilde{\mu}_a(L)}{\tilde{e}_a(L)}$$
$$= \frac{\mu_a(L) e_a(L) - e_a(L) \tilde{\mu}_a(L) + \tilde{e}_a(L) \tilde{\mu}_a(L)}{\tilde{e}_a(L)}$$
$$= \frac{(\mu_a(L) - \tilde{\mu}_a(L)) \left(e_a(L) - a(L) \right)}{\tilde{e}_a(L)} + \mu_a(L)$$

- Doubly robust property: if either model is correct, we have E[Y(a)|L] = E[f(a, L, Y)|L]
- Estimator:

$$\widehat{\tau} = \frac{1}{n} \sum_{i} \left[\frac{Y_i 1_{A_i=1}}{\widehat{e}(L_i)} - \frac{1_{A_i=1} - \widehat{e}(L_i)}{\widehat{e}(L)} \widehat{\mu}_1(L_i) \right] - \frac{1}{n} \sum_{i} \left[\frac{Y_i 1_{A_i=0}}{1 - \widehat{e}(L_i)} - \frac{1_{A_i=0} - (1 - \widehat{e}(L_i))}{1 - \widehat{e}(L)} \widehat{\mu}_0(L_i) \right]$$

Matching estimator

- $J_i: M_i$ closest units to unit j under alternative treatment
- Define

$$\hat{Y}_{i}(1) = \begin{cases} \frac{1}{M_{i}} \sum_{j \in J_{i}} Y_{j} & \text{if } A_{i} = 0\\ Y_{i} & \text{if } A_{i} = 1 \end{cases}, \qquad \hat{Y}_{i}(0) = \begin{cases} Y_{i} & \text{if } A_{i} = 0\\ \frac{1}{M_{i}} \sum_{j \in J_{i}} Y_{j} & \text{if } A_{i} = 1 \end{cases}$$

• Matching estimator:

$$\hat{\tau} = \frac{1}{n} \sum_{i=1}^{n} \hat{Y}_i(1) - \frac{1}{n} \sum_{i=1}^{n} \hat{Y}_i(0)$$

- Reference review paper by Stuart (2008, Stat Sci)
- R package: Matching, Matchit

Bootstrap Parameter Estimator $F \qquad t(F) \qquad \hat{t}$ $F \rightarrow \hat{F} \qquad t(\hat{F}) \qquad \hat{t}_1^*, \cdots, \hat{t}_B^*$ B bootstrap samples

- Use bootstrap samples to approximate both $bias(\hat{t})$ and $var(\hat{t})$
- Bootstrap by sampling with replacement can be used for statistical inference of IPW, standardization and doubly robust estimators
- A more complicated bootstrap is needed for matching estimator (Otsu and Rai, 2017 JASA)
- Need large *n*