The test-negative design has become popular for evaluating the effectiveness of post-licensure vaccines using observational data. In addition to its logistical convenience on data collection, the design is also believed to control for the differential health-care-seeking behavior between vaccinated and unvaccinated individuals, which is an important while often unmeasured confounder between the vaccination and infection. Hence, the design has been employed routinely to monitor seasonal flu vaccines and more recently to measure the COVID-19 vaccine effectiveness. Despite its popularity, the design has been questioned, in particular about its ability to fully control for the unmeasured confounding. In this paper, we explore deviations from a perfect test-negative design, and propose various sensitivity analysis methods for estimating the effect of vaccination measured by the causal odds ratio on the subpopulation of individuals with good health-care-seeking behavior. We start with point identification of the causal odds ratio under a test-negative design, considering two forms of assumptions on the unmeasured confounder. These assumptions then lead to two approaches for conducting sensitivity analysis, addressing the influence of the unmeasured confounding in different ways. Specifically, one approach investigates partial control for unmeasured confounder in the test-negative design, while the other examines the impact of unmeasured confounder on both vaccination and infection. Furthermore, these approaches can be combined to provide narrower bounds on the true causal odds ratio, and can be further extended to sharpen the bounds by restricting the treatment effect heterogeneity. Finally, we apply the proposed methods to evaluate the effectiveness of COVID-19 vaccines using observational data from test-negative designs.